|
马上注册并关注水世界微信号,获得更多资料
您需要 登录 才可以下载或查看,没有帐号?注册
扫一扫,用微信登录
x
前言 随着边缘学科声化学的建立和超声技术的发展,超声技术用于水处理的研究愈来愈受到人们重视。80年代末开始,英国、法国、比利时、美国、加拿大、德国、日本、韩国、印度等国有关专家纷纷致力于超声降解水中有机物的研究。我国大陆和台湾省的一些大学也开始了这方面研究。本课 题组于1996年开始,研究了US以及US-UV和US-H2O2技术降解水中苯酚、氯仿、四氯化碳、4一氯 酚、氯苯、丙酸、丁酸、戊酸的研究[1,2]。目前,超声技术用于水处理的研究主要还限于实验室范围。如何将实验室研究向应用方面发展是今后研究的重点。
限于篇幅,本文仅根据1996年以来的研究成果,重点介绍超声降解水中有机物的基本原理、不同物化性质有机物的降解效果及其主要影响因素和US—UV、 US—H2O2联用技术的效果。
1 超声降解有机物的基本原理
超声降解有机物是水处理中高级氧化(AOPs)技术的一种。但它又与其它AOPs技术有所区别。即在超声空化过程中,除了能产生具有强氧化能力的自由基以外,还存在高温热解作用,还可能存在瞬态超临界水(SCW)加速氧化。超声空化是指液体中微小泡核在超声波作用下被激化,表现为泡核的振荡、生长、收缩、崩溃等一系列动力学过程。空化泡瞬间崩溃时会产生高温(5000℃以上)和高压(50~1OOMPa)[3]。空化泡内(气相)的水蒸汽在高温、高压下裂解为·0H、·H自由基以及次级自由基·OOH等。部分自由基又会结合形成H2O2,空化泡崩溃产生的冲击波和射流使这些自由基和H2O2进入本体溶液。声化学反应如图1所示。在空化泡内(气相),有机物降解主要依靠高温热解和较高浓度的自由基氧化:在气—液界面的液壳区内,有机物被自由基、H202及SCW氧化并部分被热解;在本体溶液中,有机物主要被自由基和H2O2氧化。图1只是大体的反应位置,实际声化学反应比图1所示要复杂得多。对于不同物化性质的有机物质,主要作用机理也会有所不同,见后文。
2 不同物化性质有机物超声降解效果
由于超声降解有机物的机理不仅有氧化作用,还有热解作用,因此,有机物的挥发性和被氧化性对超声降解效果影响很大。图2表示三种类型有机物——易挥发有机物(三氯甲烷)、挥发性差但易氧化有机物(苯酚)、非挥发且难氧化有机物(三氯乙酸)超声降解效果的比较[1,2]。由图2可知:(1)挥发性三氯甲烷极易被超声降解,而且降解速率受起始浓度影响很小,在10min内,降解率均达到95%以上;(2)挥发性较差但易被氧化的苯酚,超声降解效果较差,而且降解率受到起始浓度影响较大;(3)非挥发难氧化三氯乙酸超声降解效果最差。图3为氯苯和4-氯酚超声降解效果对比。由图3可知,虽然超声频率和声强与图2不同,但所反映的超声降解规律与图2相似,即较易挥发的氯苯降解速率远大于难挥发的4—氯酚。
挥发性有机物之所以易被超声降解,是由于它易于进入空化泡内,从而在空化泡崩溃时所产生的高温下热解。自由基氧化作用虽然存在,但由于自由基产率较低,故氧化作用不明显。而难挥发有机物不易进入空化泡内,其降解机理主要是自由基氧化,热解作用较小,故在自由基产率较低情况下,降解速率也较低。
3 自由基清除剂对不同物化性质有机物超声降解效果的影响
正丁醇是有效的自由基清除剂,水中C1-和HCO3-对自由基也有清除作用。图4为正丁醇对氯苯降解效果的影响[2],图5为正丁醇对4—氯酚降解效果的影响[2];图6为Cl-和HCO3-对氯酚降解效果的影响[1]。
由图4~图6可知,对于氯苯、氯仿两种挥发性有物,自由基清除剂对超声降解效果几乎无影响,说明挥发性物质的降解主要是高温热解,自由基氧化作用极微。自由基清除剂对难挥发的4—氯酚降解效果影响很大,正丁醇投量增加,降解率下降。例如:经240min超声处理,不加正丁醇时,4-氯酚降解率为51.8%,正丁醇投量为2.5mmol/L时,4-氯酚降解率降至9.6%,说明难挥发的4-氯酚的超声降解主要是自由基氧化的结果。 |
|