水世界-水处理技术社区(论坛)

 找回密码
 注册

QQ登录

只需一步,快速开始

用微信登录

扫一扫,用微信登录

搜索
查看: 1470|回复: 6
打印 上一主题 下一主题

重金请高手做题目:每题50金钱。

[复制链接]

12万

积分

2万

金钱

3万

帖子

论坛顾问

2016十年风雨同舟2012年度“十大风云人物”勋章财富勋章教书育人勋章无所不知勋章十大风云人物2011年度十大风云人物勋章季度优秀版主勋章

QQ
跳转到指定楼层
楼主
发表于 2008-6-5 21:38:22 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
150/150金钱
1.以延时曝气活性污泥法阐述生物硝化过程与动力学。 2.厌氧氨氧化的原理与工艺,并阐述其发展。 3.A/O法生物除磷动力学。

分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 转播转播 分享分享 分享淘帖 支持支持 反对反对
干啥别灌水!磕碜啊。
污水处理毕业设计论文在线求助与答疑
论坛已有资料,请自己下载,不接受pm索取。
清啦

25万

积分

101

金钱

1

帖子

超脱水师

沙发
发表于 2008-6-5 23:18:36 | 只看该作者
我晕!这么刁难人!cc老师还记得我给你推荐的那本好氧的书吧,上面倒是全有的。

12万

积分

2万

金钱

3万

帖子

论坛顾问

2016十年风雨同舟2012年度“十大风云人物”勋章财富勋章教书育人勋章无所不知勋章十大风云人物2011年度十大风云人物勋章季度优秀版主勋章

QQ
板凳
 楼主| 发表于 2008-6-6 08:35:16 | 只看该作者
最近事情多,人又发懒,想不劳而获。
干啥别灌水!磕碜啊。
污水处理毕业设计论文在线求助与答疑
论坛已有资料,请自己下载,不接受pm索取。

1万

积分

1105

金钱

1908

帖子

铂金水师

地板
发表于 2008-6-14 09:32:22 | 只看该作者
厌氧氨(氮)氧化脱氮技术原理及应用前景 3 厌氧氨(氮)氧化脱氮技术原理及应用前景   3.1 自养脱氮技术原理   如图1所示,厌氧氨(氮)氧化辅以亚硝化是实现自养脱氮的最有效途径。厌氧氨氧化与中温亚硝化均是近十年来由荷兰代尔夫特工业大学Kluyver生物技术实验室所开发的新工艺。  3.1.1 厌氧氨(氮)氧化(ANAMMOX)   厌氧氨氧化ANAMMOX(ANaerobic AMMonium OXidation)指的是厌氧条件下氨氮以亚硝酸氮作为电子接受体直接被氧化到氮气的过程,其分解反应如下: ???NH+4+NO?-2→N2+2H2O(1)???   从这一反应中所产生的Gibbs自由能甚至比产生于好氧氨(氮)氧化(硝化)的能量还高,所以,能够支持自养细菌生长。早在20世纪70年代中期,Broda便从自由能理论计算中预测到自然界应该存在着ANAMMOX现象[14],但它的现实发现是在理论预测10年之后。荷兰人Mulder首先在用于反硝化的流化床中发现了这一现象[2]。起ANAMMOX作用的微生物已被成功地分别在实验室流化床[15]与SBR反应器[16]中培养、富集到一定浓度,合成培养基为氨氮与亚硝酸氮的混合物。ANAMMOX微生物的增长率与产率是非常低的,但是氮的转换率却为0.25 mgN/(mgSS·d),这与传统好氧硝化的转换率相当[17]。ANAMMOX反应在10~43 ℃的温度范围内具有活性,适宜的pH为6.7~8.3。   ANAMMOX无需有机碳源存在,碳酸盐/二氧化碳是ANAMMOX微生物生长所需的无机碳源。ANA MMOX总试验计量化学式由方程(2)所表示,它是ANAMMOX分解(方程(1))与合成的总的表达式。ANAMMOX一个令人惊奇的性质是它在反应过程中需要转换部分亚硝酸氮到硝酸氮??[15 ]?,如方程(2)所示。因为ANAMMOX由自养微生物所完成,所以,为固定CO2并使之还原为有机碳需要有一个电子给予体。理论上,两种基质,氨氮(氧化到亚硝酸氮)及亚硝酸氮 (氧化到硝酸氮)均可担当此任,但在现实中显然仅亚硝酸氮被用于此目的。   NH+4+1.32NO2-+0.066HCO3-+0.13H+→   0.066CH2O0.5N0.15?+1.02N2+0.26NO3-   +2.03H2O          (2)  3.1.2 中温亚硝化(SHARON)   中温亚硝化英文简称SHARON(Single reactor for High Ammonium Removal Over Nitrite ),氨氮氧化的终产物为亚硝酸氮[18~22]。众所周知,常温下的硝化是一个由两种不同的自养细菌所完成的生物化学过程:第一步,氨氮首先被氧化到亚硝酸氮(亚硝化);第二步,亚硝酸氮继续被氧化成硝酸氮(硝化)。在环境温度下(如典型的10~20 ℃),硝化细菌比亚硝化细菌增长速率要快。这暗示着亚硝酸氮作为一种中间过渡形态很难以聚集浓度存在于环境温度之下。然而,当温度增高之后,出现与常温下相反的情况,因为硝化细菌在温度提高后其增长率变得比亚硝化细菌要低。根据反应的活性能,荷兰研究人员Hunik??[23]?绘出了亚硝化细菌和硝化细菌的最小污泥龄与温度之间的关系,如图4。图4 揭示,靠细致地选择污泥龄,硝化细菌完全有可能被从系统中排除,而仅仅使亚硝化细菌保持在反应器中。   图4 亚硝化细菌和硝化细菌的最小污泥龄与温度关系   SHARON工艺的基本工作原理便是利用了温度高有利于亚硝化细菌增殖这一特点,使硝化细菌失去竞争[21~22]。此外,温度高有利于提高细菌的比增长率,这便有可能使微生物被保持在一有限容积的单一反应器中,而无需污泥停留(以恒化器方式运行)。在SHARON工艺中无污泥停留意味着污泥龄(SRT)完全等于水力停留时间(HRT)。因此,反应器的稀释率(1 /HRT)能被设定在某一数值,使亚硝化细菌快速增长并停留在反应器中,而让硝化细菌排出系统。作为一个安全的运行温度,35 ℃被选择为SHARON工艺的工作温度。此时,亚硝化细菌的最大比增长率为2.1 d-1,在实际情况下导致大约为1 d左右的好氧污泥龄。   虽然SHARON工艺选择了快速增长的亚硝化细菌,但这样的微生物对氨氮具有较低的亲和性 (即在反应动力学中具有较高的半饱和常数?Ks)[20]。在实际中,这将导致出水含有较高浓度的氨氮(10~100 mgN/L)。因此,SHARON工艺最适合于处理具有一定温度的高浓度(>500 mgN/L)氨氮污水。试验表明,亚硝化过程在pH下降到6.4左右时停止,因为在此pH条件下硝化细菌变得活跃起来[21~22]。对SHARON工艺来说,最佳的运行pH 在6.8~7.2之间。  3.1.3 生物膜内亚硝化   亚硝酸氮在生物膜内的聚集是亚硝化的另一种形式,这种现象已在一些试验中低溶解氧浓度(0.5~1.5 mgO2/L)的情况下被观察到,并被确认存在于现实之中[24~25]。硝化细菌与亚硝化细菌间对氧的亲和性之差别,以及传质限制等因素影响这两种微生物在生物膜内的数量。许多研究人员从试验中已广泛地观察到,亚硝化细菌对氧的亲和常数 (即半饱和常数)比硝化细菌要低很多[26~30]。如果生物膜内的溶解氧受限制,这两种微生物间的竞争必定发生。竞争的结果总是亚硝化细菌获胜。在一个生物膜系统中,快速增长的细菌倾向于占据生物膜的表层[31]。微生物的这种性质对亚硝化细菌的增长非常有利,因为在环境中低DO/NH3-N比值情况下,氧通常是限制性基质,不足以向生物膜内部扩散[32]。生物膜内微生态进化的结果将是硝化细菌消失,而亚硝化细菌大量繁殖,至少在生物膜的表层情况如此。  3.2 自养脱氮工艺应用现状与前景   ANAMMOX工艺的出现为工业污水或生活污水以较可持续方式脱氮处理创造了新的技术条件[2,33,34]。ANAMMOX与一亚硝化工艺相结合,氨氮能够被直接自养转换到氮气。以此种方式脱氮,传统上需以有机电子供体(COD)支持反硝化的问题便被完全避免。因此,污水中较多的COD便有可能被分离而转化为甲烷。进言之,一半以上的曝气量(为硝化)被节约。与ANAMMOX相结合的亚硝化工艺可以SHARON方式或者在生物膜内实现。  3.2.1 SHARON与ANAMMOX结合工艺   这种自养脱氮工艺见图5。主要针对高浓度氨氮污水。进水首先进入一悬浮增长、无污泥停留的SHARON单元,运行最佳温度为35 ℃。目前,世界上SHARON工艺的首例工程应用已在荷兰鹿特丹的Dokhaven污水处理场内实现[35];它被用于污泥消化液(含有1000~ 1500 mgN/L)反硝化的前处理(亚硝化)。这个SHARON亚硝化单元以实验室2 L小试反应器为基础,通过数学模拟直接放大到现场1500 m3处理构筑物。几年实际运行情况表明,这个亚硝化处理单元性能良好,亚硝化率几乎可达100%(需控制pH)。   事实上,上述SHARON亚硝化单元是为今后以ANAMMOX方式处理污泥消化液所做的前期技术准备。目前,对图5所示SHARON后接ANAM MOX的完全自养脱氮工艺已完成全部实验室研究工作。   图5 SHARON与ANAMMOX相结合的自养脱氮工艺流程   作为ANAMMOX的前处理单元,实验室中2 L小试的SHARON亚硝化反应器(SBR)在30~40 ℃条件下运行,总的氮负荷为1.2 gN/L,pH不受控制。SHARON反应器以pH不受控制方式运行的结果将是不完全亚硝化。试验表明[35],有53%的消化液氨氮被亚硝化(见表1)。换句话说,SHARON反应器的出水实际上是氨氮与亚硝酸氮的混合液。这恰好就是ANAMMOX反应器所需的最佳进水基质。经一个运行在30~37 ℃的2 L ANAMMOX反应器处理后,来自SHARON反应器之混合液中的亚硝酸氮则全部被去除。根据ANAMMOX的试验计量式(方程(2)),在SHARON 反应器中57%的氨氮亚硝化应是在ANAMMOX反应器中全部去除氨氮与亚硝酸氮的最佳转换率。试验表明[35],在SHARON反应器中氨氮的亚硝化率完全受pH(在6.5~7.5间)控制。所以,要想得到一个理想的亚硝化率可以靠控制pH来实现。   表1 SHARON与ANAMMOX结合自养脱氮小试氮平衡 项目 SHARON ANAMMOX 进水 出水 进水 出水 NH+4-N/mgN/L 1.18 0.55 0.55 0.07 NO2--N/mgN/L 0 0.60 0.60 0 NO3--N/mgN/L 0 0 0 0.15 NOx-N/mgN/L 0 0 0 0   鹿特丹Dokhaven污水处理场污泥消化液目前反硝化脱氮处理单元将会在不久的将来被ANAMMOX工艺所取代,有关ANAMMOX工程应用的中试正在设计之中。无疑,这将为高浓度氨氮的可持续脱除建立世界上首座示范工程。  3.2.2 生物膜内自养脱氮工艺(CANON)   生物膜内的亚硝化前已述及。如果在生物膜系统内ANAMMOX微生物也能同时生长,那么生物膜内一体化的完全自养脱氮工艺便可能实现。在实践中,这种一体化的自养脱氮现象确实已在一些工程或试验中被观察到[36~38]。这种自养脱氮工艺已被命名为CANON(Completely Autotrophic N removal Over Nitrite)??[39]?。   CANON工艺的工作原理如图6,以方程(2)表示的ANAMMOX计量化学式为依据。在支持同时硝化与ANAMMOX的生物膜系统中,通常存在3种不同的自养微生物:亚硝化细菌、硝化细菌、厌氧氨氧化细菌。这3种细菌相互间竞争氧、氨氮与亚硝酸氮。如上所述,由于亚硝化细菌与硝化细菌间对氧的亲和性不同,以及传质限制等因素,亚硝酸氮在生物膜表层的聚集是可能的。当氧向内扩散到被全部消耗后,厌氧层出现,厌氧氨氧化细菌便有可能在此生长。随着未被亚硝化的氨氮与亚硝化后的亚硝酸氮扩散至厌氧层,ANAMMOX反应便能进行。CANON 工艺总的化学计量式由方程(3)表示。可见,环境中的氨氮与溶解氧是决定CANON 工艺的两个关键因子。 图6 CANON工艺生物膜反应模型   ???NH+4+3/4 O2→1/2 N2+3/2 H2O+H+?(3)??   虽然目前CANON工艺在世界范围内仍处于研发阶段,还没有真正的工程应用,但是它必将会给可持续污水脱氮技术带来革命性的变革。在ANAMMOX微生物学研究成果的基础上[17],我们所做的数学模拟技术??[40~41]?已对CANON工艺的各个未知因素和影响因子进行了理论分析,辨认了主要影响因子,从而为CANON工艺的工程应用提供了有力的中试基础。

1万

积分

1105

金钱

1908

帖子

铂金水师

5
发表于 2008-6-14 09:42:42 | 只看该作者



以延时曝气活性污泥法阐述生物硝化过程与动力学 这是氧化沟的

硝化动力学.doc

410 KB, 下载次数: 2, 下载积分: 金钱 -1

1万

积分

1105

金钱

1908

帖子

铂金水师

6
发表于 2008-6-14 10:34:39 | 只看该作者
A/O法生物除磷动力学

除磷动力学.doc

94 KB, 下载次数: 0, 下载积分: 金钱 -1

1万

积分

1105

金钱

1908

帖子

铂金水师

7
发表于 2008-6-14 10:53:20 | 只看该作者
顺便 鄙视一下 确实比较懒
您需要登录后才可以回帖 登录 | 注册   扫一扫,用微信登录

本版积分规则

联系管理员|手机版|小黑屋|水世界-水处理技术社区(论坛) ( 京ICP备12048982号-4

GMT+8, 2025-5-5 00:48 , Processed in 0.138555 second(s), 47 queries .

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表