水世界-水处理技术社区(论坛)

 找回密码
 注册

QQ登录

只需一步,快速开始

用微信登录

扫一扫,用微信登录

搜索
楼主: cygyc-gc
打印 上一主题 下一主题

[SBR/CASS工艺] SBR资料+问题+讨论 专贴

[复制链接]

8901

积分

2万

金钱

1442

帖子

黄金水师

2016十年风雨同舟

41
发表于 2006-12-31 13:51:34 | 只看该作者

SBR工艺处理烤鳗废水




SBR工艺处理烤鳗废水 概述   福建省某冷冻食品有限公司是一家主要生产烤鳗的中外合资企业,生产过程中排放的废水主要含有血液。油脂、鳗鱼内脏碎块和酱油(调味品),可生化性较好。工程采用厌氧调节——SBR法废水处理工艺,经2个月的调试运行后通过竣工验收,监测结果表明,处理后出水符合GB8978——1996《污水综合排放标准》中一级排放标准。 1 水质及处理工艺 1.1 废水水量、水质   该厂拥有一条烤鳗生产线,年生产烤鳗1000t,平均日产5t烤鳗成品,单位产品耗水率30m3,即设计处理规模150m3/d。   排入废水处理站的废水包括剖杀工序废水和车间清洗废水,其中剖杀工序废水占75%,内含血红蛋白。油脂和鳗鱼内脏碎块;车间清洗水主要含油脂和调味品。混合废水中油脂、NH3-N、SS等指标均较高,具体数据见表3。 1.2 处理工艺确定   废水处理选择SBR为主体的处理工艺,其流程如图1。   废水经过格网和隔油池处理后进入厌氧调节池,并由高位出水口重力流入SBR池,曝气、沉淀后排放。SBR池中剩余污泥定期由潜污泵提升到污泥干化场,干泥可作为农肥,污泥渗滤液回流到调节池再处理。 1.3 主要构筑物   主要构筑物、设备及其工艺参数见表1。   11111 表1 主要构筑物及其工艺参数 构筑物 型号规格 数量 设计及运行参数 格网 尼龙,网眼d=5mm 2套 一天更换2次 隔油池 砖砌1.4m×1.4m×1.2m 4格 停留时间0.47h 厌氧调节池 钢筋混凝土 1座 停留时间1.2d   10m×6m×3.6m 分2格   SBR系统 钢筋混凝土 1座 DO:0.5-2.0mg/L   19m×6m×3.96m 分3格 进水、曝气、沉淀、排水、闲置等运行时间安排见表2   穿孔管曝气、层管出水   置等运行时间安排见表2 污泥干化场 砖砌4m×2m×1.15m 2座   罗茨鼓风机 R221 2台 Qp=6.2m3/min Hp=39.2kPa N=11kW 2 设计要点 2.1 预处理:包括格网和隔油池。   废水中含有大量鳗鱼的内脏碎块,采用提拉替换式尼龙网袋作为格网,有效地防止了该部分物质进入后续处理系统,拦截的悬浮物可作为猪饲料,隔油池将油脂回收利用,同时避免了油脂对后续处理的不良影响。 2.2 厌氧调节池   废水经1天多的停留后,血红蛋白等大分子有机物将被厌氧菌分解成有机小分子,更容易在后续好氧处理中氧化分解。废水采用重力作用流人SBR系统,不设置提升泵,降低了设备投资和运行费用。 2.3 通过SBR系统曝气调节、控制混合液的溶解   氧和沉淀、闲置时间,使有机污染物得到有效去除,同时达到良好地脱氮效果。 3 调试运行 3.1 培菌、驯化   ①培菌过程:投加1.5t的湿猪粪作为接种污泥,放入烤鳗废水进行闷曝,每天排放适量上清液,再补充原水。如此循序渐进,随着每天更换水量的日益提高,20d后完成活性污泥培养,此时池中满流量时混合液的NLSS已达2500mg/L。   ②驯化运行:活性污泥培养完毕后,即开始系统驯化运行,此过程主要同步监测溶解氧,控制鼓风机运行,共历时1个月。 3.2 运转情况   调试运行期间水温20-28℃,平均CODcr,约700mg/L,系统运行周期安排见表2。 3.3 验收监测情况   系统稳定运行半个月后,由环境监测站连续3d的取样监测结果表明,出水完全达到设计和排放标准要求,其中NH3-N指标远优于排放标准水质,见表3。   表2 系统运行周期时间表   进水状态 曝气状态 沉淀状态 排水状态 闲置状态 第一阶段 第二阶段 第三阶段 时间安排 8:00-18:00 8:00-14:00 14:00-20:00 20:00-4:00 4:00-6:00 6:00-7:30 7:30-8:00 DO值/(mg.L-1)   0.5-1.0 1.0-2.0 0.5-1.0       鼓风机运行台数 停机 1台 2台 1台 停机 停机 停机   表3 水质监测数据 项目 序号 pH 色度稀释倍数 CODcr/(mg.L-1) BOD5/(mg.L-1) SS/(mg.L-1) 氨氮/(mg.L-1) 动物油脂/(mg.L-1) 进口 出口 进口 出口 进口 出口 去除率 /% 进口 出口 去除率 /% 进口 出口 去除率 /% 进口 出口 去除率 /% 进口 出口 去除率 /% 1 6.77 7.59 14 6 1630 92.8   657 26.0   585 45.0   41.8 1.45   92.6 17.4   2 6.75 7.58 12 6 989 95.2   490 26.2   602 54.0   40.3 1.56   90.4 16.8   均值 6.76 7.58 13 6 1300 94.0 92.8 574 26.1 95.5 594 49.5 91.7 41.0 1.50 96.3 91.5 17.1 81.3 1 5.53 7.59 20 4 501 86.0   266 26.4   462 21.0   42.4 1.34   75.6 15.6   2 6.01 7.58 25 5 688 82.0   339 26.9   487 35.0   44.4 1.39   76.2 15.3   均值 5.77 7.58 20 4 594 84.0 85.9 302 26.6 91.2 474 28.0 94.1 43.4 1.36 96.9 75.9 15.4 79.7 1 7.14 7.33 20 4 723 84.8   333 25.3   413 61.0   38.7 2.57   89.4 17.2   2 6.97 7.35 15 5 701 83.2   342 25.6   416 67.0   39.8 2.68   89.5 17.0   均值 7.06 7.34 18 4 712 84.0 88.2 338 25.4 92.5 414 64.0 84.5 39.2 2.62 93.3 89.4 17.1 80.9 4 体会   ① 烤鳗废水类似于屠宰废水,需经完善的预处理后才可进入生物处理系统,避免内脏碎块等大颗粒悬浮物、汕脂等对微生物的不良影响。   ②废水中含含大量血红蛋白,采用厌氧生物法可使之分解成更易好氧生化的小分子有机物。   ③通过调节曝气量,控制混合液溶解氧的方法,能够保证SBR系统具有良好的脱氮效果。 5 结论   ①SBR法处理烤鳗废水效果好,CODcr、BOD5、SS和NH3-N等指标的去除率均达到90%以上。   ②系统工艺操作简单、运行可靠。   ③基建投资省:土建14.4万元,设备及安装7.2万元,吨水投资1440元。   ④运行费用低:吨水电耗1.6kw·h,即电费0.63元/t水。  
大家好才是真的好~~资源共享~问题同担
清啦

6万

积分

4001

金钱

4834

帖子

超凡水师

2016十年风雨同舟

QQ
42
发表于 2007-1-2 11:14:42 | 只看该作者
SBR工艺脱氮除磷研究进展
出  自:《工业用水与废水》2002年 第4期 发表时间:2002-8-1 赵耘挚,刘振鸿 (东华大学 环境科学与工程学院,上海 200051)
摘要:总结了SBR脱氮工艺中的同步硝化/反硝化、亚硝化脱氮现象,讨论了影响SBR除磷的碳源、聚磷菌与非聚磷菌竞争、pH值、好氧曝气、污泥龄、水力停留时间等因素,并对SBR工艺中脱氮除磷的相互影响进行了探讨;最后,给出了可以同时脱氮除磷的一种SBR的运行方式。   关键词:SBR;脱氮除磷;EBPR   中图分类号:X703.1   文献标识码:A   文章编号:1009-2455(2002)04-0007-04
Development of SBR Process in Removing Nitrogen and Phosphorus ZHAO Yun-zhi, LIU Zhen-hong (School of Enviroamental Science & Engineering,Donghua University,Shanghai 200051,China)   Abstract:The phenomena of simultaneous nitrification and denitrification,and nitrite denitrification in SBR was summarized. The factors such as carbon source,competition of PAOS and non-PAOS,pH,aeration,sludge age and hydraulic residence time which affect phosphorus removal of SBR were discussed.The interaction of nitrogen and phosphorus removal was also approached.Finally,an operation way of SBR to simultaneously remove nitrogen and phosphorus was suggested.   Key words:SBR;nitrogen and phosphorus removal;EBPR   脱氮除磷是当今水污染控制领域研究的热点和难点之一,为了高效而经济地去除氮、磷,研究者开发了许多工艺和方法。SBR工艺由于操作灵活,脱氮除磷效果好,所以得到了广泛的应用。当前,对于SBR工艺脱氮除磷原理的研究,又有了新的进展。 1 SBR工艺中脱氮的研究   传统的脱氮理论认为,硝化与反硝化反应不能同时发生,硝化反应在好氧条件下进行,而反硝化反应在缺氧条件下完成,SBR工艺的序批式运行为这样的反应条件创造了良好的环境;但是,最近几年国内外有不少试验和报道证明SBR系统中存在同步硝化反硝化现象(Simultaneous Nitrification and Denitrification,简称SND)。   李锋[1]等人认为,反应器内进行同时硝化/反硝化的必要条件是好氧和缺氧环境同时存在,所以应该控制DO一般在0.5~1.5mg/L这样一个较低的水平;他们引用的数据表明,采用SBR反应器,控制其中的DO在0.5~1mg/L,在反应器中形成厌氧(缺氧)和好氧并存的环境,可以实现同时硝化/反硝化的过程。   但是Hong W Zhao[2]、Lesley[3]等人的研究证明,许多异养微生物能够对有机及无机含氮化合物进行硝化作用,当BOD5与N的质量比大于6.9时异养硝化菌对氨的氧化会起很大的作用。李丛娜[4]等人在控制SBR反应器保持良好的好氧状态(DO>8mg/L),MLSS较低的情况下,对此进行了研究,他们发现,在每一工作周期的前期,硝化反应的进行使氨氮比较彻底地转化为硝酸盐氮,氨氮浓度逐渐降低同时总氮浓度也逐渐降低。并由此得出结论:在这一阶段既发生了好氧硝化也发生了好氧反硝化(即同步硝化反硝化)从而导致了比较可观的总氮去除率,并推断活性污泥絮体中同时存在着异养硝化菌与好氧反硝化菌。   此外,还有学者提出了亚硝酸型生物脱氮技术[5-6],认为亚硝酸型生物脱氮技术具有降低能耗、节省碳源、减少污泥生成量、反应器容积小及占地面积省等优点;这种技术的核心是将硝化过程控制在亚硝酸阶段,随后进行反硝化。Sung-Keun Rhee[7]等人利用SBR反应器对此进行了研究。他们的结果表明,当系统中氨氮的浓度成为限制硝化细菌将亚硝酸盐氮氧化为硝酸盐氮的时候,自养型硝化菌的活性就受到了抑制,从而出现了亚硝酸盐的积累;在后续的缺氧段中,所有的积累的亚硝酸盐和硝酸盐都能够得到反硝化而完全去除,系统对总氮的去除率在85%左右。 2 SBR工艺中的除磷的研究   增强性生物除磷(Enhanced Biological Phosphorus Removal,简称EBPR)也是得到广泛注意的技术,其表现为厌氧状态释放磷的活性污泥在好氧状态下有很强的磷吸收能力,吸收的磷量超过了微生物正常生长所需要的磷量。一般认为其过程为:①厌氧段:聚磷菌(PAOS)吸收废水中的有机物,将其同化成聚羟基烷酸(PHA),其所需要的三磷酸腺苷(ATP)及还原能是通过聚磷菌细胞内贮存的聚磷和糖原的降解来提供的,这个过程会导致反应器中磷酸盐的增加;②好氧段:聚磷菌利用PHA氧化代谢产生的能量来合成细胞、吸收反应器中的磷来合成聚磷,同时,利用PHA合成糖原。   EBPR技术的关键在于厌氧区的选择,在厌氧段合成的PHA量对于好氧段磷的去除具有决定性意义。一般而言,合成的PHA越多,则释放的磷越多,好氧段就能吸收更多的磷。但是,控制良好的SBR反应器,也会发生EBPR失效的现象,研究表明主要存在以下影响: 2.1 碳源的影响   研究表明,要实现EBPR的效果,系统中COD与P的质量比的值应大于35,BOD5与P的质量比的值应大于20。如果原水中短链脂肪酸(VFAS)的含量较高,则有利于EBPR的发生并提高EBPR的效果;厌氧段废水中VFAS的含量应大于25mg[COD]/L,但是当VFAS的含量过大(>400mg[COD]/L)时,也会导致EBPR的失效洞时,碳源的不同可以导致释磷速率及PHA合成种类的不同。 2.2 聚磷菌与非聚磷菌竞争的影响   一般认为,由于一些非聚磷菌也能够在厌氧段吸收有机物而不用同时水解聚磷,从而形成了对聚磷菌的竞争反应,但是竞争的引发原因,却没有共同的解释。Liu[8]等人认为,如果用葡萄糖为外碳源,容易发生聚糖菌(GAOS)与聚磷菌的竞争,但是Che Ok Jeon[9]等人的研究表明,SBR系统中,用葡萄糖作为碳源,也能够达到EBPR的效果,而没有产生聚糖菌的增殖。Satohl[10]等人的理论认为,如果好氧段进水中的氨基酸或蛋白质的含量过低,聚磷菌的生长速率就会减慢,从而导致聚糖菌占优势;如果进水中没有氨基酸,则由于聚糖菌分解无机氮和核酸产生氨基酸的速度比聚磷菌快,从而导致聚糖菌占优势。 2.3 pH值的影响   聚磷菌在厌氧段时的释磷量一般随pH值的升高而增加,而pH值是否影响聚磷菌对有机物的吸收仍有矛盾之处。当pH<5时,EBPR现象不会发生,pH值在8.5~9.0之间是EBPR发生的最佳范围。Che Ok Jeon等人的试验[11]表明,pH对聚磷菌和聚糖菌的竞争也有一定影响,当控制厌氧段的pH在7.0(或8.0)时,聚糖菌在菌群中占优势,从而导致EBPR的失效;当不控制pH值时,由于反硝化的发生和乙酸盐的同化,厌氧段的pH值升高到了8.4,这时完全的EBPR是可以发生的。 2.4 好氧曝气的影响   好氧段曝气量过大或曝气时间过长,会使聚磷菌消耗过多的PHA从而影响对磷的吸收,当处于厌氧段后,虽然聚磷菌能以最快速率释放磷,但是这些磷在后续的好氧段内却不能再被完全吸收,即过量吸磷受到破坏,EBPR失效。所以,适当地使聚磷菌保留一部分PHA,可以保持聚磷菌的过量吸磷能力[12]。 2.5 污泥龄的影响   缩短污泥龄,可以排放较多的污泥,从而去除较多的磷,但是会恶化出水质量和增加污泥处理费用;延长污泥龄,由于聚磷菌的衰亡速度较慢,所以可以使聚磷菌在污泥中的数量增加,同样可以使磷的去除量增加。同时,污泥龄的长短会影响到聚磷菌胞内聚合物的含量。所以,EBPR系统中污泥龄不应太短,一般应大于3d。 2.6 水力停留时间的影响   由于聚磷菌对有机物的吸收在厌氧段内是很快完成的,所以厌氧段内更重要的是污泥龄;适当延长厌氧段的水力停留时间,会提高EBPR的效果,这可能是可以形成更多的PHA的原因。但是,如果厌氧/好氧水力停留时间比过大,也会使EBPR失效。 3 SBR艺中脱氮与除磷之间的相互影响   SBR工艺中脱氮与除磷之间的关系较为复杂,这主要是因为活性污泥中菌种种群的多样性而造成的,当不同的菌群占优势时,表现的规律不尽相同。 3.1 硝酸盐氮对EBPR的影响   由于EBPR过程的发生需要完全的厌氧阶段,而厌氧段硝酸盐的存在会破坏生物除磷的效果。这是由于反硝化菌会与聚磷菌竞争废水中的有机基质,而且能优先于聚磷菌利用这些有机基质进行反硝化,从而在真正厌氧状态形成之间形成了一个兼性的状态。生活污水排水中的硝酸盐氮一般在2~5mg/S之间,所以不会导致生物除磷的失效,但是如果废水中硝酸盐的浓度很高,就可能导致反硝化菌与聚磷菌对有机基质的竞争反应而导致生物除磷的失效。   Chang C H[13]等人的研究发现,如果SBR排水中的硝酸盐浓度从10.9mg/L减少到5.6mg/L时,磷的去除率可以从80%提高到98%。Pitman[14]等人的研究证明,如果回流污泥中硝酸盐的浓度低于5mg/L的时候,生物可以很容易取得良好的释磷效果,但是当硝酸盐的浓度达到10mg/L以上时,磷的释放就受到抑制从而导致生物除磷的失败。   尽管生物除磷的效果取决于操作方式,但是最重要的限制因子还是进水的COD值。一般认为,要达到良好的脱氮除磷效果,废水的COD与总氮的质量比值应大于9。Ruya[15]等人对SBR工艺的研究证明,废水中的总COD值并不是可以反映污水脱氮除磷所需碳源的有效参数,而COD中的易生物降解部分才是可以评价系统功能的主要参数。Tam[16]等人的研究认为,当进水的有机基质主要为易生物降解的组分时,反硝化和生物释磷可以同时发生,然而当难生物降解组分为主时,生物释磷是在反硝化之后发生的。 3.2 可脱氮聚磷菌(DPAOS)对系统脱氮除磷的影响   因为系统中的硝酸盐氮对EBPR有不利影响,所以最初的研究认为,能发生EBPR反应的细菌不能够进行反硝化反应,但是现在有很多研究表明,聚磷菌中至少有一部分能够在缺氧条件下利用硝酸盐为氧供体进行吸磷而发生反硝化反应[17],所以好氧段只需进行到硝化阶段即可,反硝化及吸磷可以在后续的兼性阶段完成。这种情况下,可以节省能耗和避免厌氧段反硝化菌对碳源的竞争,污泥产量和SVI值都会减小[18],但是缺氧条件下的吸磷速率较为缓慢。 3.3 亚硝酸盐氮的影响   Meinhold[19]等人对SBR反应器的研究表明,兼性状态下存在的亚硝酸盐氮对可脱氮聚磷菌的整体效果存在影响,当亚硝酸盐氮的浓度为4~5mg/L时,这种影响不是很明显,亚硝酸盐氮甚至可以作为电子供体为可脱氮聚磷菌吸磷使用,但是再高一些浓度的亚硝酸盐氮就会产生抑制作用。他们的研究表明,亚硝酸盐氮的限制浓度在5~8mg/L之间,这和污泥状况是有关的。 4 同时脱氮除磷SBR运行方式的选择   从上文的讨论可以看出,SBR工艺的脱氮和除磷的反应条件有相同之处,也有不同之处,有相互的不利影响,也有互促互生的方面。   对于需要同时脱氮除磷的场合,SBR反应器可采用图1所示流程。   静止进水可以使进水阶段结束后反应器中形成较高的基质浓度梯度,节省能耗;搅拌进水可以使反应器保持厌氧状态,保证磷的释放;曝气后的反应混合可以进行反硝化反应;随后的曝气可以吹脱污泥释放的氮气,保证沉淀效果,避免磷过早释放;为了防止沉淀阶段发生磷的提前释放问题,让排泥和沉淀同时进行[20]。 5 结论   SBR艺是一种高效、经济、可靠、适合中小水量污水处理的工艺,符合我国的国情;尤其是SBR工艺对于污水中氮、磷的去除,有其独到的优势,所以SBR工艺及其新工艺在我国有着广阔的应用前景。 参考文献: [1]李锋,朱南文,李树平,等.有氧条件同时硝化/反硝化的反应动力学模式[J].中国给水排水,1999,15(6):58-60. [2]Hong W Zhao,Donald S Mavinic William K Oldham.Controlling factors for simultaneous nitrification and denitrification in a two-stage intermittent aeration process treating domestic sewage[J].Wat Res,1999,33(4):971978. [3]Lesley A Robertson.Simultaneous nitrification and denitrification in aerobic chemostat cultures of thiosphaera pantotropha[J].Applied and Environmental Microbiology,1998,54(11):2812~2818. [4]李丛娜,吕锡武,稻森悠平.同步硝化反硝化脱氮研究[J].给水排水,2001,27(1):22~24. [5]施永生.亚硝酸型生物脱氮技术[J].给水排水,2000,26(11):21~23. [6]唐光临,孙国新,徐楚韶.亚硝化反硝化生物脱氮[J].工业水处理,2001,21(11):11~13. [7]Sung-Keun Rhee,Jay J Lee and Sung-Taik Lee.Nitrite accumulation in a sequencing batch reactor during the aerobic phase of biological nitrogen removal[J].Biotechnology Letters,1997,19(2):195~198. [8]Liu W T,Mino T,Nakamura K and Matsuo T.Role of glycogen in acetate uptake and polyhydroxyalkanoate synthesis in anaero-bic-aerobic activated sludge with a minimized polyphosphate content[J].J Ferment Bioeng,1994,77(5):535~539. [9]Che Ok jeon,Dae Sung Lee and Jong Moon Park.Enhanced biolog-ical phosphorus removal in an anaerobic-aerobic sequencing batch reactor:characteristics of carbon metabolism[J],Water Environment Research,2001,73(3):295~300. [10]Satoh H,Mino T and Matsuo T.Deterioration of enhanced biological phosphorus by the domination of micro-organisms without polyphosphate accumulation[J].Wat Sci Tech,1994,30(6):203~211. [11]Che Ok Jeon,Dae Sung Lee and Jong Moon Park.Enhanced bioslogical phosphorus removal in an anaerobic-aerobic sequencing batch reactor effect of pH[J].Water Environment Research,2001,73(3):301~306. [12]C Y Dassanayaka and R L Irvine.An enhanced biological phosphorus removal(EBPR)control strategy for sequencing batch reactors(SBRS)[J].Wat Sci tech,2001,43(3):183~189. [13]Chang C H and Hao O J.Sequencing batch reactor system for nutrient removal:ORP and pH profiles[J].J Chem Tech Biotechnol,1996,67:27~38. [14]Pitman A R,Wenter S I V and Nicholls H A.Practical experience with biological phosphorus removal in Johannesburg[J].Wat Sci Tech,1983,15(3~4):233~260. [15]Ruya Tasli,Derin Orhon and Nazik Artan,The effect of substrate composition on the nutrient removal potential of squencing batch reactors[J].Water SA,1999,25(3):337~344. [16]Tam N F Y,Worng Y S and Leung G.Effect of exogenous carbon sources on removal of inorganic nutrient by the nitrification-denitrification process[J].Wat Res,1992,26(9):1229~1236. [17]周康群,杜林,黄小丹,缺氧条件下聚磷菌利用硝酸盐吸磷的研究[J].上海环境科学,2001,20(11):556~557. [18]Kuba T,van Loosdrecht M C M and Heijnen J J.Phosphorus and nitrgen removal with minimal COD requirement by integration of denitrifying dephosphatation and nitrication in a two-sludge systsm[J].Wat Res,1996,30(7):1702~1710. [19]Meinhold J,Arnold E and Isaacs S.Effect of nitrite on anoxic phosphate uptake in biological phosphorus removal activated sludge[J].Wat Res,1999,33(8):1871~1883. [20]沈耀良,赵丹.强化SBR工艺脱氮除磷效果的若干对策[J].中国给水排水,2000,16(7):23~25. [ 本帖最后由 luxiaoshan 于 2007-1-2 11:16 编辑 ]
水世界,您我视觉的窗口、合作的平台。
有意的朋友请加入我们的行列。
论坛:http://www.chinacitywater.org
QQ:114216739
非诚勿扰!

12万

积分

2万

金钱

3万

帖子

论坛顾问

2016十年风雨同舟2012年度“十大风云人物”勋章财富勋章教书育人勋章无所不知勋章十大风云人物2011年度十大风云人物勋章季度优秀版主勋章

QQ
43
 楼主| 发表于 2007-1-2 11:20:18 | 只看该作者
小山又来给我们送好资料了,谢谢了
干啥别灌水!磕碜啊。
污水处理毕业设计论文在线求助与答疑
论坛已有资料,请自己下载,不接受pm索取。

12万

积分

2万

金钱

3万

帖子

论坛顾问

2016十年风雨同舟2012年度“十大风云人物”勋章财富勋章教书育人勋章无所不知勋章十大风云人物2011年度十大风云人物勋章季度优秀版主勋章

QQ
44
 楼主| 发表于 2007-1-2 11:21:44 | 只看该作者
原帖由 knights123 于 2006-12-31 13:51 发表 SBR工艺处理烤鳗废水 概述   福建省某冷冻食品有限公司是一家主要生产烤鳗的中外合资企业,生产过程中排放的废水主要含有血液。油脂、鳗鱼内脏碎块和酱油(调味品),可生化性较好。工程采用厌氧调节— ...
天枫,这个帖子你重新编辑一下吧,有些乱
干啥别灌水!磕碜啊。
污水处理毕业设计论文在线求助与答疑
论坛已有资料,请自己下载,不接受pm索取。

846

积分

95

金钱

51

帖子

青铜水师

45
发表于 2007-1-4 19:45:47 | 只看该作者



我也来一个《SBR工艺用于制药废水处理的探讨》

SBR工艺用于制药废水处理的探讨.PDF

82.78 KB, 下载次数: 12, 下载积分: 金钱 -1

顶一下

参与人数 1金钱 +3 收起 理由
cygyc-gc + 3 感谢上传

查看全部

846

积分

95

金钱

51

帖子

青铜水师

46
发表于 2007-1-4 20:55:51 | 只看该作者
再来一个SBR池实际应用的例子。处理皂素废水

SBR池+化学氧化池处理皂素废水.doc

60.5 KB, 下载次数: 8, 下载积分: 金钱 -1

顶一下

参与人数 1金钱 +3 收起 理由
cygyc-gc + 3 感谢上传

查看全部

12万

积分

2万

金钱

3万

帖子

论坛顾问

2016十年风雨同舟2012年度“十大风云人物”勋章财富勋章教书育人勋章无所不知勋章十大风云人物2011年度十大风云人物勋章季度优秀版主勋章

QQ
47
 楼主| 发表于 2007-1-4 21:29:27 | 只看该作者
非常感谢nameselina朋友的资料,希望继续支持我们!
干啥别灌水!磕碜啊。
污水处理毕业设计论文在线求助与答疑
论坛已有资料,请自己下载,不接受pm索取。

12万

积分

2万

金钱

3万

帖子

论坛顾问

2016十年风雨同舟2012年度“十大风云人物”勋章财富勋章教书育人勋章无所不知勋章十大风云人物2011年度十大风云人物勋章季度优秀版主勋章

QQ
48
 楼主| 发表于 2007-1-4 21:54:59 | 只看该作者
一个关于SB R的仿真软件,flash做的

sbr仿真.rar

177.63 KB, 下载次数: 38, 下载积分: 金钱 -1

干啥别灌水!磕碜啊。
污水处理毕业设计论文在线求助与答疑
论坛已有资料,请自己下载,不接受pm索取。

4593

积分

364

金钱

285

帖子

黄金水师

49
发表于 2007-1-24 16:34:19 | 只看该作者
不错的资料啊 我可以好好看看了

2129

积分

613

金钱

138

帖子

白银水师

QQ
50
发表于 2007-1-30 20:12:47 | 只看该作者

SBR工艺




SBR工艺 一、 概述   SBR是序批式活性污泥法( Sequencing Batch Reactor) 的缩写,最早由南美科学家们于1970年用于脱氮处理而引起环境学家们注意,近年来在国内外被引起广泛重视和研究的一种污水处理技术。作为一种间歇运行的废水处理工艺,其结构形式简单,运行方式灵活多变,空间上完全混合,时间上理想推流,兼均化、初沉、生物降解、终沉等功能于一池,无须设污泥回流系统。 1. 主要性能特点 优点:① 工艺简单,投资和运行费用低; ② 污泥活性强,污泥的质量浓度高;   ③ 对水量、水质变化的适应性强,有机物去除率高; ④ 静止沉淀效果好;   ⑤ 不易出现污泥膨胀;   ⑥ 脱氮除磷效果好。 缺点:① 连续进水时,对于单一SBR 反应器需要较大的调节池; ② 对于多个SBR 反应器,其进水和排水的阀门自动切换频繁; ③ 无法达到大型污水处理项目之连续进水、出水的要求。 ④ 设备的闲置率较高; ⑤ 污水提升水头损失较大; ⑥ 如果需要后处理,则需要较大容积的调节池。 2. 适用范围 SBR 运行灵活,抗冲击负荷能力强,因此特别适用于排放量小,有机物浓度高且不易降解,废液排放间歇的中小型企业.。该技术适用于处理市政生活污水和中低浓度有机工业废水,不适应于大中城市工业废水、生活污水和其它多种复杂环境中各种废水处理的需要。该工艺已成功地应用于农产品加工废水、屠宰废水、啤酒废水、制药废水、化工废水、印染废水等的处理。. (1) 中小城镇生活污水和厂矿企业工业废水,尤其是间歇排放和流量变化较大的地方,适合应用SBR法。 (2) 需要较高出水水质的地方。如风景游览区、湖泊和港湾等。使用SBR 法,不但可以去除有机物,还使出水脱氮除磷,防止河湖富营养化。 (3) 水资源紧缺的地方。此系统可在生物处理后进行物化处理,不需要增加设施,便于水的回收利用。 (4) 用地紧张的地方,宜使用此法。 (5) 已建连续流污水处理厂的改造,适合应用此法。 (6) 非常适合处理小水量,间歇排放的工业废水与分散点源污染废水的治理。 3. 基本原理 SBR 的操作模式由进水、反应、沉淀、出水和待机5 个基本阶段组成。从污水流入开始到待机时间结束算作1 个周期。在1 个周期内,一切过程都在1 个设有曝气或搅拌装置的反应池内依次进行,这种操作周期周而复始反复进行,以达到不断进行污水处理的目的。
为减少污染物的排放 尽一点力

2129

积分

613

金钱

138

帖子

白银水师

QQ
51
发表于 2007-1-30 20:14:33 | 只看该作者

SBR工艺

二、 影响因素 ① 曝气方式的影响:非限制曝气方式(进水时同时曝气) 运行的SBR 法能缓解高浓度有机废水的冲击负荷。此外,一定量的COD 能在进水和反应两个阶段被降解, 而不是仅在反应阶段降解, 这样, 非限制曝气方式运行时, 反应器内需氧速率也比较均匀, 这给供氧的运行控制也提供了方便, 同时非限制曝气方式可以缓解毒性物质的冲击;限制曝气方式(进水时不曝气),使反应器在进水时处于厌氧或缺氧状态, 有利于大分子有机物水解, 另外限制曝气使SBR 内基质存在一定的浓度梯度, 生化反应有较大的推动力,同时抑制了丝状菌的生长;渐减曝气:据SBR 法中有机物降解的规律, 溶解氧的变化规律以及运行费用来看SBR 反应器的供氧采用渐减曝气更合理、更经济一些, 而且这种曝气方式由于计算机自动控制的实现已成为必然趋势。 ② 溶解氧浓度的影响:对于好氧活性污泥法处理废水, 供氧多少一般用混合液中溶解氧的浓度控制。由于活性污泥絮凝体的大小不同, 所需要的最小溶解氧浓度不同, 絮凝体越小, 与污水的接触面积大, 越宜于对氧的摄取, 所需要的溶解氧浓度就小, 反之, 絮凝体大,则所需的溶解氧浓度就大, 为使沉淀分离性能良好, 较大的絮凝体是所期望的, 因此一般建议溶解氧浓度以2mg/L 左右为宜。此外,曝气量越小, 平衡DO 浓度越低, 所需反应时间越长, 即所需SBR容积越大; 反之, 平衡DO 浓度越高, 所需反应时间越短, 但曝气运行费用越大。 ③ 温度的影响:温度是影响微生物生长活动的重要因素, 在微生物酶系统不受变性影响的温度范围内, 水温上升就会使微生物活动旺盛, 提高反应速度。此外, 水温上升还有利于混合、搅拌、沉淀等物理过程, 但不利氧的转移, 对于生化过程, 一般水温在20℃~30℃效果最好。 ⑤ pH 值的影响:适宜微生物增长的pH 值范围一般为4- 9, SBR 法对pH 值有很强的耐冲击能力。 ⑥ 废水中的其他物质(如: Cu2+ 、SO42- ) 的影响 ⑦ 营养物的影响:一般对氮、磷的需要量应满足BOD∶N∶P= 100∶5∶1 的比例.而由于通常的SBR 法的污泥龄短, 微生物的比增长速率大, 其内源呼吸作用较弱, 微生物细胞的合成代谢相对于其分解代谢占主导地位, 降解单位有机物需要的N、P 较多.
为减少污染物的排放 尽一点力

2129

积分

613

金钱

138

帖子

白银水师

QQ
52
发表于 2007-1-30 20:15:33 | 只看该作者

SBR工艺

三、 工艺发展 1、 DAT - IAT工艺系统 DAT- IAT系统是SBR工艺完善和发展的新形式。其中DAT池为预反应池,也称为连续曝气区,池中水流呈完全混合流态,绝大部分有机物在这个池中降解,IAT相当一个传统的SBR池,但进水为连续流。DAT - IAT系统的主体构筑物由一个连续曝气池DAT(需氧池) 和一个间歇曝气池IAT串连而成。一般情况下,DAT连续进水、连续曝气,其出水连续流入IAT,在IAT完成反应、沉淀、出水等工序。DAT - IAT系统是普通活性污泥法与传统SBR工艺有机结合的一种形式,整个系统有SBR 工艺的优点,又改进了SBR 工艺的不足,具有以下特点: (1) 增加了工艺处理的稳定性; (2) 提高了池容的利用率; (3) 提高了设备的利用率; (4) 增加了整个系统灵活性. 2、 CASS 工艺 通常的CASS 分为3 个反应区:生物选择器、缺氧区、好氧区。生物选择器是设置在CASS 前端的小容积区,通常在厌氧或兼氧条件下运行,其基本功能是防止产生污泥膨胀,同时还具有促进磷的进一步释放和强化反硝化的作用,另外在这个区内的难降解大分子物质易发生水解作用,这对提高有机物的去除率具有一定的促进作用;主反应区则是去除有机底物的主场所,运行过程中通常将主反应区的曝气强度加以控制以使反应区内主体溶液处于好氧状态,完成降解有机物的过程。在池末端设有潜水泵,污泥通过潜水泵不断从主曝气区抽送至生物选择器中。CASS 工艺与ICEAS 工艺相类似,但是通过设置选择器、预反应区和污泥回流等措施可以起到控制污泥膨胀、增大有机物的去除率和除磷脱氮的作用,同时通过多个反应器的组合创造了静止沉淀的条件。在城市污水处理中应用较多。 3、 MSBR 工艺 MSBR 工艺是SBR 和A2/O 工艺的组合。污水和脱氮后的活性污泥一并进入厌氧区,泥水混合液交替进入缺氧区、好氧区和SBR池,出水由空气堰排出。厌氧区有机物充足、硝酸盐含量低,为聚磷菌的释磷提供了良好的环境。同时,基质梯度大抑制了丝状菌的繁殖。 多次交替的缺氧与好氧工况和三个回流系统使脱氮和吸磷更充分。污泥浓缩区的设置既保障了厌氧区的泥量,又减少了混合液回流量和硝酸盐进入厌氧区的机会。池中间设底部挡板,它使池前端的水流由下而上。沉淀底泥可作为截流层,该层在截留、过滤混合液过程中既提高了底泥的浓度,泥内还能进行碳源反硝化。目前MSBR工艺被认为是最新、集约化程度最高的污水处理工艺。 4、 ICEAS 工艺——内循环延时曝气系统 ICEAS工艺的基本单元是两个矩形池为一组的反应器。每个池子分为预反应区和主反应区两部分,预反应区一般处于缺氧状态,主反应区是曝气反应的主体。ICEAS工艺是连续进水工艺,不但在反应阶段进水,也可以在沉淀和滗水阶段进水。ICEAS工艺的运行周期较短(一般为4-6h),进水曝气时间占整个运行周期的一半。 5、 UNITAN K工艺 UNITANK的通用形式是采用三个池子的标准系统,这三个池子通过共壁上的开孔实现水力连接,无需用泵输送(见图2)。每个池中都装有曝气系统(可以是表曝也可以是鼓风曝气),同时外面的两个池子都装有溢流堰用于排水,既可以用作反应区也可以用作沉淀池。每个池子都可以进水,剩余污泥也是从边缘两个作沉淀池的池子排出。与传统活性污泥法一样,UNITAN K系统是连续运行的,但是其单个池子是按一定周期运行的。 6、 生物膜法BSBR 生物膜法是结合了SBR 工艺与生物接触氧化工艺的一种新工艺。广泛应用于屠宰、皮革等行业的废水处理, 具有工艺简单、经济、有机物去除率高、静止沉淀效率高、耐冲击负荷、占地面积少、运行方式灵活和不易发生污泥膨胀等特点。 是处理中小水量废水,特别是间歇排放废水的理想工艺。 7、 ASBR工艺 ASBR工艺是厌氧序批式反应器,是将SBR工艺应用于厌氧生物处理的一种新工艺。该工艺运行以间歇操作为主要特征,进水、反应、沉淀和排水4个阶段按次序排列,为一个周期,具有投资省、操作灵活、工艺稳定及去除率高等优点。
为减少污染物的排放 尽一点力

2129

积分

613

金钱

138

帖子

白银水师

QQ
53
发表于 2007-1-30 20:16:32 | 只看该作者

SBR工艺

四、 设备与装置 1、 滗水器: SBR工艺的最根本特点是单个反应器的排水形式均采用静止沉淀、集中滗 水的方式运行,由于集中滗水时间较短,因此每次滗水的流量较大,这就需要在短时间大量排水的状态下,对反应器内的污泥不造成扰动,因而需安装特别的排水装置——滗水器。滗水器是随着SBR 工艺发展起来的,其类型可以分为5 种:电动机械摇臂式、套筒式、虹吸式、旋转式和浮筒式。滗水器的组成分为收水装置、连接装置和传动装置.。 2、 曝气装置: 由于SBR 属于活性污泥法,其曝气装置与传统活性污泥法基本相同,但 SBR具有间歇运行的特殊性,对曝气设施也有特殊的要求,如要求曝气器具有防堵塞、抗瞬间的强度冲击等. SBR 工艺的曝气装置分为机械曝气和鼓风曝气2 类: 1) 机械曝气: 与传统活性污泥法相同,SBR机械曝气器也分为表面曝气器和叶轮曝气器。表面曝气器直接从空气中吸收氧气,在SBR 中采用较少,叶轮曝气器是从曝气池底部的空气分布装置引入的空气中吸取氧气。 2) 鼓风曝气:是目前普遍采用的曝气形式,SBR 工艺通常采用微孔曝气器作为曝气装置。 3、 阀门、排泥系统: SBR 运行中曝气、滗水和排泥等过程均采用计算机自动控制,因此 需要配备相应的电动、气动阀门,以便控制气、水的自动进出。剩余污泥的排放目前采用潜水泵的自动排放方式实现. 4、 自动控制系统:SBR 采用自动控制技术来达到SBR 工艺的控制要求,把用人工操作难以实现的控制通过计算机、软件、仪器设备的有机结合自动完成,并创造满足微生物生存的最佳环境。
为减少污染物的排放 尽一点力

2129

积分

613

金钱

138

帖子

白银水师

QQ
54
发表于 2007-1-30 20:17:43 | 只看该作者

SBR工艺

五、 设计计算 SBR池子的设计包括生物过程(有机物降解、硝化反硝化和生物除磷等) 设计和水力设计两个方面。生物过程设计主要是确定系统的污泥泥龄,系统中的活性污泥总量,循环周期以及各个阶段如厌氧、好氧、缺氧、沉淀、撇水阶段的时间分配;水力设计则主要是确定池子个数,每个SBR 池子的最大贮水容积(最低水位至最高水位之间的池容) 以及进水贮 水池的池容等。 1、运行周期(T)的确定 SBR的运行周期由充水时间、反应时间、沉淀时间、排水排泥时间和闲置时间来确定。充水时间(tv)应有一个最优值。如上所述,充水时间应根据具体的水质及运行过程中所采用的曝气方式来确定。当采用限量曝气方式及进水中污染物的浓度较高时,充水时间应适当取长一些;当采用非限量曝气方式及进水中污染物的浓度较低时,充水时间可适当取短一些。充水时间一般取1~4h。反应时间(tR)是确定SBR 反应器容积的一个非常主要的工艺设计参数,其数值的确定同样取决于运行过程中污水的性质、反应器中污泥的浓度及曝气方式等因素。对于生活污水类易处理废水,反应时间可以取短一些,反之对含有难降解物质或有毒物质的废水,反应时间可适当取长一些。一般在2~8h。沉淀排水时间(tS+D)一般按2~4h设计。闲置时间(tE)一般按2h设计。 一个周期所需时间tC≥tR﹢tS﹢tD ; 周期数 n﹦24/tC 2、反应池容积的计算 假设每个系列的污水量为q,则在每个周期进入各反应池的污水量为q/n•N。各反应池的容积为V;1/m:排出比 n:周期数(周期/d) N:每一系列的反应池数量 q:每一系列的污水进水量(设计最大日污水量)(m3/d) 3、曝气系统 序批式活性污泥法中,曝气装置的能力应是在规定的曝气时间内能供给的需氧量,在设计中,高负荷运行时每单位进水BOD为0.5~1.5kgO2/kgBOD,低负荷运行时为1.5~2.5kgO2/kgBOD。 在序批式活性污泥法中,由于在同一反应池内进行活性污泥的曝气和沉淀,曝气装置必须是不易堵塞的,同时考虑反应池的搅拌性能。常用的曝气系统有气液混合喷射式、机械搅拌式、穿孔曝气管、微孔曝气器,一般选射流曝气,因其在不曝气时尚有混合作用,同时避免堵塞。 4、排水系统 上清液排除出装置应能在设定的排水时间内,活性污泥不发生上浮的情况下排出上清液,排出方式有重力排出和水泵排出。 为预防上清液排出装置的故障,应设置事故用排水装置。在上清液排出装置中,应设有防浮渣流出的机构。序批式活性污泥的排出装置在沉淀排水期,应排出与活性污泥分离的上清液,并且具备以下的特征: 1) 应能既不扰动沉淀的污泥,又不会使污泥上浮,按规定的流量排出上清液。(定量排水) 2) 为获得分离后清澄的处理水,集水机构应尽量靠近水面,并可随上清液排出后的水位变 化而进行排水。(追随水位的性能) 3) 排水及停止排水的动作应平稳进行,动作准确,持久可靠。(可靠性) 排水装置的结构形式,根据升降的方式的不同,有浮子式、机械式和不作升降的固定式。 5、排泥设备 设计污泥干固体量=设计污水量×设计进水SS浓度×污泥产率/1000 在高负荷运行(0.1~0.4 kg-BOD/kg-ss•d)时污泥产量以每流入1 kgSS产生1 kg计算, 在低负荷运行(0.03~0.1 kg-BOD/kg-ss•d)时以每流入1 kgSS产生0.75 kg计算。 在反应池中设置简易的污泥浓缩槽,能够获得2~3%的浓缩污泥。由于序批式活性污泥法不设初沉池,易流入较多的杂物,污泥泵应采用不易堵塞的泵型。
为减少污染物的排放 尽一点力

2129

积分

613

金钱

138

帖子

白银水师

QQ
55
发表于 2007-1-30 20:20:04 | 只看该作者

SBR工艺

六、SBR设计主要参数 序批式活性污泥法的设计参数,必须考虑处理厂的地域特性和设计条件(用地面积、维护管理、处理水质指标等)适当的确定。 用于设施设计的设计参数应以下值为准: 项 目 参 数 BOD-SS负荷(kg-BOD/kg-ss•d) :0.03~0.4 MLSS(mg/l) :1500~5000 排出比(1/m) :1/2~1/6 安全高度ε(cm):(活性污泥界面以上的最小水深) 50以上 。 序批式活性污泥法是一种根据有机负荷的不同而从低负荷(相当于氧化沟法)到高负荷(相当于标准活性污泥法)的范围内都可以运行的方法。序批式活性污泥法的BOD-SS负荷,由于将曝气时间作为反应时间来考虑,定义公式如下: QS:污水进水量(m3/d) CS:进水的平均BOD5(mg/l) CA:曝气池内混合液平均MLSS浓度(mg/l) V:曝气池容积 e:曝气时间比 e=n•TA/24 n:周期数 TA:一个周期的曝气时间 序批式活性污泥法的负荷条件是根据每个周期内,反应池容积对污水进水量之比和每日的周期数来决定,此外,在序批式活性污泥法中,因池内容易保持较好的MLSS浓度,所以通过MLSS浓度的变化,也可调节有机物负荷。进一步说,由于曝气时间容易调节,故通过改变曝气时间,也可调节有机物负荷。在脱氮和脱硫为对象时,除了有机物负荷之外,还必须对排出比、周期数、每日曝气时间等进行研究。 在用地面积受限制的设施中,适宜于高负荷运行,进水流量小负荷变化大的小规模设施中,最好是低负荷运行。因此,有效的方式是在投产初期按低负荷运行,而随着水量的增加,也可按高负荷运行。 不同负荷条件下的特征 有机物负荷条件 高负荷运行 低负荷运行 进水条件 间歇进水 间歇进水、连续 运行条件-BOD-SS负荷(kg-BOD/kg-ss•d) 0.1~0.4 0.03~0.1 周期数 大(3~4) 小(2~3) 排出比 大 小 处理特性 有机物去除 处理水BOD<20mg/l 去除率比较高 脱氮 较低 高 脱磷 高 较低 污泥产量 多 少 维护管理 抗负荷变化性能比低负荷差 对负荷变化的适应性强,运行的灵活性强 用地面积 反应池容积小,省地 反应池容积较大 适用范围 能有效地处理中等规模以上的污水,适用于处理规模约为2000m3/d以上的设施 适用于小型污水处理厂,处理规模约为2000m3/d以下,适用于不需要脱氮的设施
为减少污染物的排放 尽一点力

2129

积分

613

金钱

138

帖子

白银水师

QQ
56
发表于 2007-1-30 20:21:58 | 只看该作者

SBR工艺

七、SBR设计需特别注意的问题 (一)主要设施与设备 1、设施的组成 本法原则上不设初次沉淀池,本法应用于小型污水处理厂的主要原因是设施较简单和维护管理较为集中。为适应流量的变化,反应池的容积应留有余量或采用设定运行周期等方法。但是,对于游览地等流量变化很大的场合,应根据维护管理和经济条件,研究流量调节池的设置。 2、反应池 反应池的形式为完全混合型,反应池十分紧凑,占地很少。形状以矩形为准,池宽与池长之比大约为1:1~1:2,水深4~6米。 反应池水深过深,基于以下理由是不经济的:①如果反应池的水深大,排出水的深度相应增大,则固液分离所需的沉淀时间就会增加。②专用的上清液排出装置受到结构上的限制,上清液排出水的深度不能过深。 反应池水深过浅,基于以下理由是不希望的:①在排水期间,由于受到活性污泥界面以上的最小水深限制,上清液排出的深度不能过深。②与其他相同BOD-SS负荷的处理方式相比,其优点是用地面积较少。 反应池的数量,考虑清洗和检修等情况,原则上设2个以上。在规模较小或投产初期污水量较小时,也可建一个池。 3、排水装置 排水系统是SBR处理工艺设计的重要内容,也是其设计中最具特色和关系到系统运行成败的关键部分。目前,国内外报道的SBR排水装置大致可归纳为以下几种:⑴ 潜水泵单点或多点排水。这种方式电耗大且容易吸出沉淀污泥;⑵ 池端(侧)多点固定阀门排水,由上自下开启阀门。缺点操作不方便,排水容易带泥;⑶ 专用设备滗水器。滗水器是是一种能随水位变化而调节的出水堰,排水口淹没在水面下一定深度,可防止浮渣进入。理想的排水装置应满足以下几个条件:① 单位时间内出水量大,流速小,不会使沉淀污泥重新翻起;② 集水口随水位下降,排水期间始终保持反应当中的静止沉淀状态;③ 排水设备坚固耐用且排水量可无级调控,自动化程度高。 在设定一个周期的排水时间时,必须注意以下项目: ① 上清液排出装置的溢流负荷 —确定需要的设备数量; ② 活性污泥界面上的最小水深 —主要是为了防止污泥上浮,由上清液排出装置和溢流负荷确定,性能方面,水深要尽可能小; ③ 随着上清液排出装置的溢流负荷的增加,单位时间的处理水排出量增大,可缩短排水时间,相应的后续处理构筑物容量须扩大; ④ 在排水期,沉淀的活性污泥上浮是发生在排水即将结束的时候,从沉淀工序的中期就开始排水符合SBR法的运行原理。 (二)SBR工艺的需氧与供氧 SBR工艺有机物的降解规律与推流式曝气池类似,推流式曝气池是空间(长度)上的推流,而SBR反应池是时间意义上的推流。由于SBR工艺有机物浓度是逐渐变化的,在反应初期,池内有机物浓度较高,如果供氧速率小于耗氧速率,则混合液中的溶解氧为零,对单一的微生物而言,氧气的得到可能是间断的,供氧速率决定了有机物的降解速率。随着好氧进程的深入,有机物浓度降低,供氧速率开始大于耗氧速率,溶解氧开始出现,微生物开始可以得到充足的氧气供应,有机物浓度的高低成为影响有机物降解速率的一个重要因素。从耗氧与供氧的关系来看,在反应初期SBR反应池保持充足的供氧,可以提高有机物的降解速度,随着溶解氧的出现,逐渐减少供氧量,可以节约运行费用,缩短反应时间。SBR反应池通过曝气系统的设计,采用渐减曝气更经济、合理一些。 (三)SBR工艺排出比(1/m)的选择 SBR工艺排出比(1/m)的大小决定了SBR工艺反应初期有机物浓度的高低。排出比小,初始有机物浓度低,反之则高。根据微生物降解有机物的规律,当有机物浓度高时,有机物降解速率大,曝气时间可以减少。但是,当有机物浓度高时,耗氧速率也大,供氧与耗氧的矛盾可能更大。此外,不同的废水活性污泥的沉降性能也不同。污泥沉降性能好,沉淀后上清液就多,宜选用较小的排出比,反之则宜采用较大的排出比。排出比的选择还与设计选用的污泥负荷率、混合液污泥浓度等有关。 (四)SBR反应池混合液污泥浓度 根据活性污泥法的基本原理,混合液污泥浓度的大小决定了生化反应器容积的大小。SBR工艺也同样如此,当混合液污泥浓度高时,所需曝气反应时间就短,SBR反应池池容就小,反之SBR反应池池容则大。但是,当混合液污泥浓度高时,生化反应初期耗氧速率增大,供氧与耗氧的矛盾更大。此外,池内混合液污泥浓度的大小还决定了沉淀时间。污泥浓度高需要的沉淀时间长,反之则短。当污泥的沉降性能好,排出比小,有机物浓度低,供氧速率高,可以选用较大的数值,反之则宜选用较小的数值。SBR工艺混合液污泥浓度的选择应综合多方面的因素来考虑。 (五)关于污泥负荷率的选择 污泥负荷率是影响曝气反应时间的主要参数,污泥负荷率的大小关系到SBR反应池最终出水有机物浓度的高低。当要求的出水有机物浓度低时,污泥负荷率宜选用低值;当废水易于生物降解时,污泥负荷率随着增大。污泥负荷率的选择应根据废水的可生化性以及要求的出水水质来确定。 (六)SBR工艺与调节、水解酸化工艺的结合 SBR工艺采用间歇进水、间歇排水,SBR反应池有一定的调节功能,可以在一定程度上起到均衡水质、水量的作用。通过供气系统、搅拌系统的设计,自动控制方式的设计,闲置期时间的选择,可以将SBR工艺与调节、水解酸化工艺结合起来,使三者合建在一起,从而节约投资与运行管理费用。 在进水期采用水下搅拌器进行搅拌,进水电动阀的关闭采用液位控制,根据水解酸化需要的时间确定开始曝气时刻,将调节、水解酸化工艺与SBR工艺有机的结合在一起。反应池进水开始作为闲置期的结束则可以使整个系统能正常运行。具体操作方式如下所述: 进水开始既为闲置结束,通过上一组SBR池进水结束时间来控制; 进水结束通过液位控制,整个进水时间可能是变化的。 水解酸化时间由进水开始至曝气反应开始,包括进水期,这段时间可以根据水量的变化情况与需要的水解酸化时间来确定,不小于在最小流量下充满SBR反应池所需的时间。 曝气反应开始既为水解酸化搅拌结束,曝气反应时间可根据计算得出。 沉淀时间根据污泥沉降性能及混合液污泥浓度决定,它的开始即为曝气反应的结束。 排水时间由滗水器的性能决定,滗水结束可以通过液位控制。 闲置期的时间选择是调节、水解酸化及SBR工艺结合好坏的关键。闲置时间的长短应根据废水的变化情况来确定,实际运行中,闲置时间经常变动。通过闲置期间的调整,将SBR反应池的进水合理安排,使整个系统能正常运转,避免整个运行过程的紊乱。
为减少污染物的排放 尽一点力

2129

积分

613

金钱

138

帖子

白银水师

QQ
57
发表于 2007-1-30 20:23:13 | 只看该作者

SBR工艺

八、SBR调试程序及注意事项 (一) 活性污泥的培养驯化 SBR反应池去除有机物的机理与普通活性污泥法基本相同,主要大量繁殖的微生物群体降解污水中的有机物。 活性污泥处理系统在正式投产之前的首要工作是培养和驯化活性污泥。活性污泥的培养驯化可归纳为异步培驯法、同步培驯法和接种培驯法,异步法为先培养后驯化,同步法则培养和驯化同时进行或交替进行,接种法系利用其他污水处理厂的剩余污泥,再进行适当的培驯。 培养活性污泥需要有菌种和菌种所需要的营养物。对于城市污水,其中的菌种和营养都具备,可以直接进行培养。对于工业废水,由于其中缺乏专性菌种和足够的营养,因此在投产时除用一般的菌种和所需要营养培养足够的活性污泥外,还应对所培养的活性污泥进行驯化,使活性污泥微生物群体逐渐形成具有代谢特定工业废水的酶系统,具有某种专性。 (二) 试运行 活性污泥培养驯化成熟后,就开始试运行。试运行的目的使确定最佳的运行条件。在活性污泥系统的运行中,影响因素很多,混合液污泥浓度、空气量、污水量、污水的营养情况等。活性污泥法要求在曝气池内保持适宜的营养物与微生物的比值,供给所需要的氧,使微生物很好的和有机物相接触,全体均匀的保持适当的接触时间。 对SBR处理工艺而言,运行周期的确定还与沉淀、排水排泥时间及闲置时间有关,还和处理工艺中所设计的SBR反应器数量有关。运行周期的确定除了要保证处理过程中运行的稳定性和处理效果外,还要保证每个池充水的顺序连续性,即合理的运行周期应满足运行过程中避免两个或两个以上的池子同时进水或第一个池子和最后一个池子进水脱节的现象。同时通过改变曝气时间和排水时间,对污水进行不同的反应测试,确定最佳的运行模式,达到最佳的出水水质、最经济的运行方式。 (三) 污泥沉降性能的控制 活性污泥的良好沉降性能是保证活性污泥处理系统正常运行的前提条件之一。如果污泥的沉降性能不好,在SBR的反应期结束后,污泥难以沉淀,污泥的压密性差,上层清液的排除就受到限制,水泥比下降,导致每个运行周期处理污水量下降。如果污泥的絮凝性能差,则出水中的悬浮固体(SS)含量将升高,COD上升,导致处理出水水质的下降。 导致污泥沉降性能恶化的原因是多方面的,但都表现在污泥容积指数(SVI)的升高。SBR工艺中由于反复出现高浓度基质,在菌胶团菌和丝状菌共存的生态环境中,丝状菌一般是不容易繁殖的,因而发生污泥丝状菌膨胀的可能性是非常低的。SBR较容易出现高粘性膨胀问题。这可能是由于SBR法是一个瞬态过程,混合液内基质逐步降解,液相中基质浓度下降了,但并不完全说明基质已被氧化去除,加之许多污水的污染物容易被活性污泥吸附和吸收,在很短的时间内,混合液中的基质浓度可降至很低的水平,从污水处理的角度看,已经达到了处理效果,但这仅仅是一种相的转移,混合液中基质的浓度的降低仅是一种表面现象。可以认为,在污水处理过程中,菌胶团之所以形成和有所增长,就要求系统中有一定数量的有机基质的积累,在胞外形成多糖聚合物(否则菌胶团不增长甚至出现细菌分散生长现象,出水浑浊)。在实际操作过程中往往会因充水时间或曝气方式选择的不适当或操作不当而使基质的积累过量,致使发生污泥的高粘性膨胀。 污染物在混合液内的积累是逐步的,在一个周期内一般难以马上表现出来,需通过观察各运行周期间的污泥沉降性能的变化才能体现出来。为使污泥具有良好的沉降性能,应注意每个运行周期内污泥的SVI变化趋势,及时调整运行方式以确保良好的处理效果。
为减少污染物的排放 尽一点力

12万

积分

2万

金钱

3万

帖子

论坛顾问

2016十年风雨同舟2012年度“十大风云人物”勋章财富勋章教书育人勋章无所不知勋章十大风云人物2011年度十大风云人物勋章季度优秀版主勋章

QQ
58
 楼主| 发表于 2007-1-30 21:00:50 | 只看该作者
楼上的朋友,一个论文分成这么多分没有必要啊
干啥别灌水!磕碜啊。
污水处理毕业设计论文在线求助与答疑
论坛已有资料,请自己下载,不接受pm索取。

12万

积分

2万

金钱

3万

帖子

论坛顾问

2016十年风雨同舟2012年度“十大风云人物”勋章财富勋章教书育人勋章无所不知勋章十大风云人物2011年度十大风云人物勋章季度优秀版主勋章

QQ
59
 楼主| 发表于 2007-2-7 10:30:08 | 只看该作者
干啥别灌水!磕碜啊。
污水处理毕业设计论文在线求助与答疑
论坛已有资料,请自己下载,不接受pm索取。

1684

积分

769

金钱

367

帖子

白银水师

60
发表于 2007-2-7 10:43:21 | 只看该作者
SBR是国家重点推广的三种工艺之一
您需要登录后才可以回帖 登录 | 注册   扫一扫,用微信登录

本版积分规则

联系管理员|手机版|小黑屋|水世界-水处理技术社区(论坛) ( 京ICP备12048982号-4

GMT+8, 2025-5-14 23:25 , Processed in 0.161617 second(s), 59 queries .

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表