|
马上注册并关注水世界微信号,获得更多资料
您需要 登录 才可以下载或查看,没有帐号?注册
扫一扫,用微信登录
x
人工湖滨湿地磷素汇-源功能转换及理论解释 全文下载张奇
(中国科学院南京地理与湖泊研究所,南京210008)
摘 要:采用水动力弥散和吸附理论建立了表流湿地水-土界面磷通量模型,定义了湿地汇-源转换的临界水体磷浓度值. 模型揭示,湿地对磷的截留是水动力弥散和吸附共同作用的结果. 在湿地建成运行初期,吸附作用明显,临界浓度值较低,湿地较好地发挥截磷功能. 随着湿地的运行,土壤吸附趋于饱和,吸附作用减弱,水动力弥散变为主导因素,临界浓度值增大,使湿地除磷功能减弱,在一定条件下,反而可能释放磷. 本文建立的磷通量模型具有明确的物理基础,能解释湿地对磷去除功能退化的机理和汇-源转换条件. 应用模型对抚仙湖马料河湿地的观测数据作了初步解释,该湿地运行两年后,临界磷浓度值为0.58mg/L,湿地除磷功能明显衰退.
关键词:人工湿地;汇-源功能;水动力弥散;吸附;磷通量模型
参考文献
[1]姜翠玲, 崔广柏. 湿地对农业非点源污染的去除效应. 农业环境保护, 2002, 21(5): 471-473,476.
[2]刘文祥. 人工湿地在农业面源污染控制中的应用研究. 环境科学研究, 1997, 10(4): 15-19.
[3]许春华, 周 琪, 宋乐平. 人工湿地在农业面源污染控制方面的应用. 重庆环境科学, 2001, 23(3): 70-72.
[4]陈源高, 吴献花, 李文朝, 孔志明. 抚仙湖窑泥沟人工湿地的除磷效果研究. 应用生态学报, 2005, 16(10): 1913-1917.
[5]Jordan T E, Whigham D F, Hofmockel K H et al. Nutrient and sediment removal by a restored wetland receiving agricultural runoff. Journal of Environmental Quality, 2003, 32: 1534-1547.
[6]Craft C B. Dynamics of nitrogen and phosphorus retention during wetland ecosystem succession. Wetlands Ecology and Management, 1996, 4(3): 177-187.
[7]Elder J F. Nitrogen and phosphorus speciation and flux in a large Florida river wetland system. Water Resources Research, 1985, 21(5): 724-732.
[8]Stanley E H, Ward A K. Inorganic nitrogen regimes in an Alabama wetland. Journal of the North American Benthological Society, 1997, 16(4): 820-832.
[9]King D L. Nutrient cycling by wetlands and possible effects of water levels. Coastal Wetlands. Lewis Publishers, Chelsea Michigan, 1985: 69-86.
[10] Pant H K, Reddy K R. Hydrologic influence on stability of organic phosphorus in wetland detritus. Journal of Environmental Quality, 2001, 30: 668-674.
[11] Richardson CJ. Mechanisms controlling phosphorus retention capacity in freshwater wetlands. Science, 1985, 228(4706): 1424-1426.
[12] Fisher M M, Reddy K R. Phosphorus flux from wetland soils affected by long?term nutrient loading. Journal of Environmental Quality, 2001, 30: 261-271.
[13] Pant H K, Reddy K R. Potential internal loading of phosphorus in a wetland constructed in agricultural land. Water Research, 2003, 37: 965-972.
[14] Zhang Q, Volker R E. Lockington D A. Dispersion?based transport boundary condition in numerical modelling of density?dependent groundwater flow. Handbook and Proceedings of Water 99 Joint Congress, Brisbane, Australia, 6-8 July 1999, Volume 2: 785-790.
[15] Fetter CW. Contaminant Hydrogeology. USA: Macmillan Publishing Company, 1993.
[16] 《水和废水监测分析方法》编委会. 水和废水监测分析方法, 第四版. 北京: 中国环境科学出版社, 2002.
[17] Mitsch W J, Reeder B C. Nutrient and hydrologic budgets of a great lakes coastal freshwater wetland during a drought year. Wetlands Ecology and Management, 1992, 1(4): 211-222. |
|