|
马上注册并关注水世界微信号,获得更多资料
您需要 登录 才可以下载或查看,没有帐号?注册
扫一扫,用微信登录
x
太湖五里湖生态重建示范工程——大型围隔试验 全文下载
陈开宁1,2,包先明1,2,史龙新3,陈伟民1,兰策介1,许海1,胡洪云1
(1:中国科学院南京地理与湖泊研究所,南京 210008)
(2:中国科学院研究生院,北京 100039)
(3:无锡市太湖湖泊治理有限公司,无锡 214023)
摘要:五里湖是太湖北部富营养化程度最为严重的一湖湾.从2004年1月起,为了改善水质,重建五里湖生态环境,在五里湖南岸建立了一个面积为10×104 m2示范工程试验区,采用多技术措施集成应用,开展湖泊生态重建技术研究.经过近2年的生态重建研究与实践,在示范工程试验区内建立了挺水植物、浮叶植物和沉水植物群丛23个,水生植物种类从生态重建前的零上升至15科、22属、32种,水生植物的多样性指数(Shannon?Wiener index)达到2.33,覆盖度达到40%-55%.水质监测结果表明,示范工程区内水体的TN、TP、NH4-N、NO3-N、NO2-N及PO4-P的平均值分别比示范工程区外下降了20.7%、23.8%、35.2%、21.1%、45.6%和54.0%,TN、TP分别下降至2.50mg/L、0.080mg/L以下,水质得到明显改善,达到或低于“浅水湖泊稳态转换理论”指出的向“稳定清水态”转换的临界值,水体透明度(SD)平均值也有较大幅度提高,平均从0.39m提高至0.70m;初步实现湖泊水体从藻类占优势浊水态向大型水生植物占优势的清水态转变.因此重建与恢复湖泊生态系统要从沿岸带着手,首先重建湖滨带结构与功能,通过湖滨带水生生物一系列反馈机制,逐步改善湖泊水质,最终实现沉水植被恢复;湖泊敞水区应主要采用生物操纵技术措施来实现湖泊生态恢复.
关键词:生态重建; 水生植被恢复; 水质改善; 五里湖;太湖
参考文献
[1]Committee on Restoration of Aquatic Ecosystem, Commission on Geosciencees,Environment, and Resources. Restoration of Aquatic Ecosystems: Science, Technology, and Public Policy. Washington D C: National Academy Press, 1992.
[2]Cook G D, Welch E B, Peterson S A, et al. Restoration, Management of Lakes & Reservoirs. 2nd ed. Florida: Lewis Publishers, 1993.
[3]Phillips G, Bramwell A, Pitt J, et al. Practical application of 25 years' research into the management of shallow lakes. Hydrobiologia, 1999, 395/396: 61-76.
[4]Marsden S. Lake restoration by reducing external phosphorus loading: the influence of sediment phosphorus release. Freshwater Biology, 1989, 21: 139-62.
[5]S?ndergaard M, Jensen J P, Jeppesen E. Internal phosphorus loading in shallow Danish lakes. Hydrobiologia, 1999, 408/409: 145-52.
[6]S ndergaard M, Jeppesen E, Jensen J P et al. Lake restoration in Denmark. Lakes & Reservoirs: Research and Management, 2000, 5: 151-159.
[7]Benndorf J. Conditions for effective biomanipulation; conclusions derived from whole?lake experiments in Europe. Hydrobiologia, 1990, 200/201: 187-203.
[8]Jeppesen E, Jensen J P, Kristensen P, et al. Fish manipulation as a lake restoration tool in shallow eutrophic temperate lakes 2: threshold levels, long-term stability and conclusions. Hydrobiologia, 1990, 200/201: 219-27.
[9]Barko J W, James W F. Effects of submerged aquatic macrophytes on nutrient dynamics, sedimentation, and resuspension. In: Jeppesen E, Sondergaard M, Sondergaard M, Christoffersen K. Eds. The Structuring role of submerged macrophytes in lakes. New York: Springer, 1998: 197-214.
[10] Burkholder J M, Wetzel R G, Klomparens K L. Direct comparison of phosphate uptake by adnate and loosely attached microalgae within an intact biofilm matrix. Appl Environ Microbiol, 1990, 56: 2882-2890.
[11] Hansson L A. Quantifying the impact of periphytic algae on nutrient availability for phytoplankton. Freshwater Biology, 1990,24: 265-273.
[12] Vadeboncoeur Y, Steinman A D. Periphyton function in lake ecosystems. The Sci World, 2002, 2:1449-1468.
[13] Schriver P, B?gestrand J, Jeppesen E, S?ndergaard M. Impact of submerged macrophytes on fish phytoplankton zooplankton interactions: large?scale enclosure experiments in a shallow eutrophic lake. Freshwater Biology, 1995, 33: 255-270.
[14] Vermaat J E, Santamaria L, Roos P J. Water flow across and sediment trapping in submerged macrophyte beds of contrasting growth form. Arch Hydrobiol, 2000, 148: 549-562.
[15] Wigand C, Stevenson J C, Cornwell J C. Effects of different submersed macrophytes on sediment biogeochemistry. Aquatic Botany, 1997, 56: 233-244.
[16] Scheffer M, van den Berg M, Breukelaar A, et al. Vegetated areas with clear water in turbid shallow lakes. Aquatic Botany, 1994, 49: 193-196.
[17] Jeppesen E, Sondergaard M, Sondergaard M, Christoffersen K, Eds. The structuring role of submerged macrophytes in lakes. New York: Springer, 1998: 423.
[18] Scheffer M, Hosper H, Meijer M L, et al. Alternative equilibria in shallow lakes. Trends Ecol Evol, 1993,8: 275-279.
[19] Scheffer M, Carpenter S R, Foley J A, et al. Catastrophic shifts in ecosystems. Nature, 2001, 413: 591-596.
[20] Hosper S H, Meijer M L. Biomanipulation, will it work for your lake. A simple test for the assessment of chances for clear water, following drastic fish?stock reduction in shallow eutrophic lakes. Ecological Engineering, 1993, 2: 63-72.
[21] Moss B. Aguide to the restoration of nutrient?enriched shallow lakes. Environment Agency, Broads Authrity. ISBN 0948119292, 1996.
[22] Sagrario M A G, Jeppesen E, Goma J, et al. Does high nitrogen loading prevent clear?water conditions in shallow lakes at moderately high phosphorus concentrations? Freshwater Biology, 2005, 50: 27–41.
[23] 秦伯强,胡维平,陈伟民等. 太湖水环境演化过程与机理. 北京:科学出版社,2004.
[24] 郭培章,宋群. 中外水体富营养化治理案例研究. 北京:中国计划出版社,2003.
[25] 许木启,黄玉瑶. 受损水域生态恢复与重建研究. 生态学报,1998,18(5):547-558.
[26] 邱东茹,吴振斌. 富营养浅水湖泊退化与生态修复. 长江流域资源与环境,1996,5(4):355-361.
[27] 俞建军. 引水对西湖水质改善作用的回顾. 水资源保护,1998,2:50-55.
[28] 濮培民,王国祥,胡春华等. 底泥疏浚能控制湖泊富营养化吗. 湖泊科学, 2000, 12(3): 269-279.
[29] Hosper S H. Stable states, buffers and switches: an ecosystem approach to the restoration and management of shallow lakes in Netherlands. Wat Sci tech, 1998, 37(3): 151-164.
[30] 朱树屏,杨光圻. 太湖北部湖水中几种理化性质周年变化. 海洋与湖沼,1959,2(3):146-162.
[31] 伍献文. 五里湖1951年湖泊学调查.水生生物学集刊,1962,1(1):63-113.
[32] 李文朝,杨清心,周万平. 五里湖营养状况及治理对策探讨. 湖泊科学, 1994,6(2): 136-143.
[33] 顾岗,陆根法. 太湖五里湖水环境综合整治的设想. 湖泊科学,2004, 16(1): 56-60.
[34] 罗清吉,石浚哲. 五里湖淤泥现状及生态清淤. 环境监测管理与技术,2003,15(1): 27-29.
[35] 金相灿, 屠清瑛. 湖泊富营养化调查规范(第二版). 北京:中国环境科学出版社, 1990.
[36] 彭映辉, 简永兴, 倪乐意. 长湖水生植物多样性及其变化. 云南植物研究, 2003, 25(2):173-180.
[37] Jeppesen E, Sondergaard M, Jesen J P, et al. Lake responses to reduced nutrient loadingan analysis of contemporary long?term data from 35 case studies. Freshwater Biology, 2005, 50: 1747-1771.
[38] Havens K E, Sharfstein B, Brady M A, et al. Recovery of submerged plants from high water stress in a large subtropical lake in Florida, USA. Aquatic Botany, 2004, 78:67-82.
[39] 中国科学院南京地理研究所. 太湖综合调查初步研究. 北京:科学出版社,1965: 51-57.
[40] Lazzaro X. Do the trophic cascade hypothsis and classical biomanipulation approaches apply to trophical lakes and reservoirs? Verh Internat Verein Limnol, 1997,26: 719-730. |
|