|
马上注册并关注水世界微信号,获得更多资料
您需要 登录 才可以下载或查看,没有帐号?注册
扫一扫,用微信登录
x
单频GPS快速定位中模糊度解算的一种新方法 | 欧吉坤1 王振杰1,2 | 1. 中国科学院测量与地球物理研究所, 武汉 430077
2. 山东理工大学建筑工程学院, 淄博 255012
| | 摘要:研究只利用几个历元的单频相位数据进行GPS快速定位的新方法. 首先分析了GPS快速定位法矩阵的结构特性. 基于Tikhonov正则化原理, 针对这种特性, 设计了一种正则化矩阵的构造方法. 通过新的正则化矩阵的作用, 减弱了法矩阵的病态性. 新方法解算几个历元的单频GPS相位数据, 可以得到比较准确的模糊度浮点解及其相应的均方误差矩阵, 用均方误差矩阵代替协因数阵, 结合LAMBDA方法, 可准确快速地确定模糊度. 以一个3 km多的基线实测数据为例, 新方法仅用5个历元(5秒)的单频L1相位数据, 确定的整周模糊度值与长时间的Bernese软件解算的结果一致. 197组序列解确定整周模糊度的成功率为100%. 与传统的方法相比, 新方法明显地提高了快速定位的准确性和效率. 新方法在变形监测和准动态定位以及姿态确定等方面有良好的应用前景. | 关键词:快速定位 病态性 正则化矩阵 均方误差阵 模糊度 | 全文 | 订阅 收藏 | | 参考文献:
1 周忠谟, 易杰军, 周琪. GPS卫星测量原理与应用. 北京: 测绘出版社, 1997. 125~129
2 陈永奇, James L. 单历元GPS变形监测数据处理方法的研究. 武汉测绘科技大学学报, 1998, 23(4): 324~328
3 Mok E. Reliable single epoch GPS processing algorithm for static deformation monitoring. In: Papers Presented at the Symposium on Geodesy for Geotechnical and Structural Engineering, Eisenstadt, Austria, 1998. 159~166
4 Wu J T. Processing mixed pseudo-range and carrier phase GPS data. Manuscripta Geodaetica, 1995, (20): 27~33
5 Hofmann-Wellenhof B, Lichtenegger H, Collins J. Global Positioning System, Theory and Practice, Fourth revised edition. New York: SpringerWien, 1997. 201~223
6 Frei E, Beutler G. Rapid static positioning based on the fast ambiguity resolution approach “FAFA”, theory and first results. Manuscripta Geodaetica, 1990, (15): 325~356
7 Teunissen P J G. The Least-Squares ambiguity decorrelation adjustment: A method for fast GPS integer ambiguity estimation. Journal of Geodesy, 1995, 70(1-2): 65~82
8 Kim D, Langley R B. An optimized Least-Squares technique for improving ambiguity resolution and computational efficiency. ION GPS-1999: 1579~1588
9 Hatch R, Sharpe T. A computationally efficient ambiguity resolution technique. ION GPS-2001, 2001: 1558~1564
10 Lee Y J, Won Y-D, Jee G-I. A real time ambiguity search technique for precise positioning using GPS L1 carrier phase. ION GPS-1999, 1999: 1589~1595
11 Han S, Rizos C. An instantaneous ambiguity resolution technique for medium-range GPS kinematic positioning. Navigation, 2000, 47(1): 17~31
12 Tikhonov A N, Arsenin V Y. Solutions of Ill-posed Problems. New York: Wiley, 1977. 10~21
13 Hoerl A E, Kennard R W. Ridge regression: Biased estimation for non orthogonal problems. Technometrics, 1970, 12(1): 55~67
14 杨文采. 地球物理反演的理论与方法. 北京: 地质出版社, 1997. 55~67
15 Moritz H. Advanced Physical Geodesy. Verlag Karlsruhe: Herbert Wichmann, 1980. 238~243
16 Hansen P C. Analysis of discrete ill-posed problems by means of the L-curve. SIAM Review, 1992, 34(4): 561~580
17 Hansen P C, O’Leary D P. The use of the L-curve in the regularization of discrete ill-posed problems. SIAM J Sci Comput, 1993, 14(6): 1487~1503
18 Franklin, J N. Well posed stochastic extension of ill-posed problem. J Math Appl, 1970, (31): 682~716
19 周江文, 欧吉坤, 杨元喜, 等. 测量误差理论新探. 北京: 测绘出版社, 1999. 19~28
| |
|
|