水世界-水处理技术社区(论坛)

 找回密码
 注册

QQ登录

只需一步,快速开始

用微信登录

扫一扫,用微信登录

搜索
楼主: huangyustar
打印 上一主题 下一主题

GIS论文资料合集

[复制链接]

247

积分

648

金钱

134

帖子

初级水师

161
发表于 2007-1-5 14:53:36 | 只看该作者

基于SCADA 和GIS技术的供水管网调度系统




摘要: 监测监控及数据采集系统(Supervisory Control and Data Acquisition-SCADA)能够远程控制、监测、收集设备数据并把它传送到监控中心。地理信息系统(Geographical Information System-GIS)具有捕获、管理、操作、分析与空间数据相关的数据能力, 在各种空间数据的基础上建立分析模型并将SCADA系统输出的实时数据导入到模型中可以增加模型的准确度和实时性,GIS强大的图形显示能力大大增强了模型可视化分析能力。本文就建立基于GIS和SCADA系统集成的供水管网调度系统并给出系统原型。 一、前言 随着近年来我国城市发展建设速度的加快,即有和新建供水管网也越来越庞大、分散。供水管网作为城市极为重要的基础设施和经济与社会发展的源泉,加强对供水管网调度的信息化建设具有相当重要意义。利用计算机信息技术、通信技术和自动控制技术对整个供水管网运行过程的主要参数、管网信息、设备运状况进行动态监测、实时调度和自动化控制,实现自动化信息管理,并将监测点信息与管网空间位置相结合,以地形图为基础,直观表达管网运行状况和监控点状态,结合预测、统计、数学模型、空间分析等手段,根据经济、技术指标和实际情况,进行优化控制反馈,完成对供水管网调度各个环节的合理配置,即供水管网调度与辅助决策问题,成为保障供水管网经济、可靠运行关键所在。尤其体现在对管网的快速、准确监控、安全维护、管网合理设计、抢修施工等方面.本文将讨论如何利用GIS和SCADA系统技术实现对供水管网调度的有效管理,这将极大提高有关部门的管理水平和工作效率。 二、SCADA与GIS 系统介绍 2.1 SCADA 系统[1,2] SCADA是用于现场监测和自动化管理技术。以该技术建立的系统能够收集现场数据并通过有线或者无线信道传输到监控中心,由控制中心根据预先设定的程序控制远程的设备。在需要监控的地点或者控制范围很大的场合下使用该系统是非常经济有效的。国内从20世纪 80年代开始,SCADA系统在供水行业得到了广泛的应用。它可以实时采集现场数据,对现场进行本地或远程的自动控制,对供水过程进行全面、实时监视,并为生产、调度和管理提供必要的参考数据。 SCADA系统由远程终端(RTU),一级或数级控制站点以及相应的通讯设备和外部设备所组成。RTU是整个SCADA系统的重要部分,担负者监控设备本地数据读取、检测,并接受远程遥测命令等重要任务。RTU的作用是对监控设备本地的数据采集及发送,接受并完成来自远程控制命令,完成本地的控制。RTU主要配置有CPU模块、模拟量I/O模块、数字量I/O模块、通信模块、电源、通信设备、机箱、测量仪表及相应物理执行机构。控制中心站点是系统的控制中心,通过控制中心安装的相关软件,工作人员可以对SCADA系统进行各种直观的操作。控制中心站的作用是实时采集RTU运行参数,从而进行负荷分析、优化调度、状态评估、故障预报与分析、综合管理,向RTU下达遥控指令,并完成统计报表等功能。其主要配置有中心控制计算机(服务器)、通信机、工作站、大屏幕投影仪、打印机等输出设备。复杂的SCADA系统中可以设置多级控制中心站点。目前SCADA系统的通讯方式主要有两种 :有线和无线。无线方式主要通过无线电台构成专用通信网,但存在着电台设备的更新和传输协议中数据传输检错、纠错能力等问题,其可靠性和有效性有待提高。而有线网通讯技术的研究目前有了突破性进展,特别是互联网技术的发展使有线网的应用走向更深层次,可利用率更高,发展前景较好。 2.2 GIS系统[3,4] 计算机管理作为信息管理的重要硬件工具,它的优越性已经取得了业界广泛的认同,在计算机管理的模式中,管网信息和与管网相关的设备、地形、环境信息从根本上讲是地理信息,传统的数据库管理技术不能很好地管理这些信息,而GIS作为集计算机科学、地理学、测绘遥感学、环境科学、城市科学、空间科学和管理科学及相关学科等为一体的新兴学科,将与地理信息相关的空间位置、属性特征及时域特征进行统一的管理,按一种新的方式组织和使用地理信息,以便更有效地分析和生产新的地理信息。GIS并非仅仅在所管理的数据内容方面与众不同,在理论和方法上也有很多特色,相应地许多新的重要功能也是传统方法无法提供的。地理信息系统能够对海量空间数据、拓扑结构、拓扑关系进行有效管理,能够进行与空间相关的查询统计、空间分析(多边形迭置、缓冲分析、网络分析等)和三维模型分析,提供多种空间数据录入和输出手段,等等。而这些功能正是一个完备的供水管网调度信息系统所应具备的基础平台。GIS系统已经在全球建立起来,并且很多已经建立起来的数据集合都是可用的。 2.3 SCADA和GIS系统的技术互补 总体上说,SCADA系统记录的数据是随时间变化的,系统接受和显示实时监测数据并根据事先的制定的规则决定是否报警. SCADA系统只能给出网络中正在发生的事件,无法预测接下了来将发生事情,因此不能告诉操作人员在不同的运行参数下网络运行的情况,没有分析和辅助决策功能。RTU单元只可能安装在监测网络上一些关键地位置上,不可能不经济地安装在网络上的所有位置上。在上个世纪90年代,国内外的GIS软件厂商都在它们的GIS系统内集成了进了SCADA系统功能模块。但这样系统强迫GIS系统改变原来系统设计特性, GIS的设计目标从来就不是实时处理工具,GIS平台不能保证不间断的稳定运行。开发这样的系统的难度要比较想象的高,系统处理动态的数据是困难的。另一方面,在SCADA系统集成GIS功能的尝试也是不成功的。空间数据的显示需要考虑不同的因素而不是像SCADA系统简单的曲线图。这样的系统只能是具有中等规模的数据库和具有非常高速的数据事件处理能力,但这是以简化网络模型与图形显示功能为代价的。 SCADA系统最大的局限性在于它缺乏显示空间数据能力,而GIS具有显示复杂空间数据能力确不能很好管理实时数据的问题。SCADA与GIS系统集成可以增加现场实时监测数据的可视化能力。本文在综合分析SCADA和GIS系统特点的基础上,详细讨论了供水管网调度系统的设计与实现。 第三、基于SCADA和GIS技术管网调度系统[5] 3.1系统设计目的与结构框图 目前,国内已开发完成的供水管网调度系统大多数都是依赖某个特定的SCADA和GIS系统平台,限制了系统之间的可操作性能. 针对国内应用现状,本文提出的基于SCADA与GIS 集成的供水管网调度系统,它首先是一个现代化的分布式供水管网调度管理系统平台,SCADA和GIS数据的处理在统一的平台上完成,即系统同时支持空间和实时数据的处理,且保证必要的效率;系统不依赖于特定的GIS和SCADA系统的,用户最终通过统一接口访问空间和实时的数据,并在在此之上执行供水管网调度与分析工作。除此之外系统还要提供与客户服务投诉、事故抢修等系统的接口. 系统框图如图(1)所示。 最底层的是数据处理模块。完成与GIS和SCADA系统的接口转换工作,本系统使用通用接口从外界获取所需要的数据,系统采用了新的数据抽取和校验技术,在数据提取子模块中的数据甄别和校验等功能可以大大提高数据提取速度和正确性并维护数据集成。从外部传入的GIS空间数据和SCADA实时数据通过数据提取模块处理后被规则化以系统内部格式保存在实时网络数据库中。实时网络数据库保存了供水管网的静态网络数据,也存储了SCADA的实时数据,实时网络空间数据库管理模块将是整个系统分析模块的数据基础。这样为系统上层屏蔽了下层的数据交换细节。 系统中层是模型分析模块。它接受用户提出的分析要求,寻找适当的分析模型,在找到适当的分析模型后,调用建模模块从实时网络数据库中提取数据完成分析并给出分析结论,分析结果以多种形式返回给用户。对于报警、事故等需要操作人员立刻干预的情况,系统中的监控模块直接接受由SCADA系统的数据。在需要进行趋势分析情况下也调用系统的模型分析模块完成辅助决策功能。 系统最上层是与用户交互的接口模块。系统提供各种标准的界面便于用户完成供水管网调度的任务。下面就系统中核心模块功能予以详细介绍。 3.2实时网络数据库:[1] 本系统的实时网络数据库中的管网空间静态网络数据与来自SCADA系统的实时数据在物理上是分开存放的,但在它们之间建立特殊的索引,通过索引可以很快在静态的管网空间数据中找到对应的实时数据列表,反之亦然。数据提取模块可以从各种GIS系统读取空间数据库中的数据,然后转换成系统专有的格式供整个系统使用。系统提取数据处理方法是:首先直接从交换文件把静态的空间数据导入系统,然后对导入的数据进行校验和检查完整性以纠正源数据中的错误。大部分的数据检查工作是系统自动完成的.例如如果缺少管径的信息,可以通过设立默认的缺省值去除错误;解决供水管网的网络连接错误,额外管线被加入数据库当中以保证整个管网的连通(大口径主干管的情况下);自动移去在网络边缘上小口径的管线,去除没有跟系统主干连接的小管线。当然系统也提供人机交互方式进行其它需要人工干预的数据检查工作。SCADA系统传过来的数据首先保存在数据库中,然后根据实时数据中的实体ID与管网静态数据中的对应的实体建立双向索引关系,便于系统对二种数据互查[6]。经过上述处理“实时网络数据库”克服了GIS和SCADA在数据存储的各种弊端并发挥各自的长处。为上层的模型分析模块提供良好的数据基础。 3.3模型分析[6,7] 作为一个分析工具模型会经常根据关键性评估指标把复杂系统的简化使得我们很好的理解系统、检查系统在不同的参数下运行地效果。通常建立分析模型的主要工作集中在模型建立阶段,花费大量时间和资源,而没有足够的时间为校准模型和模型分析留够时间。这种情况现在本系统改变了很多,专业建模模块和数据处理模块使得模型建立时间可以大大的减少,给模型分析留足的充分的时间,这提高了模型分析能力和实用性。必须要保证模型的数据的正确性和经过检验才能确保模型的模拟效果。 本系统中分析模型可以通过模拟泵站动态的操作、阀门的开启度来预测在供水网络中各种不同的水流和压力条件。计算机模拟供水系统提供有效的设计新系统的方式以及调查和优化已经存在的系统而不需要扰乱真实系统的运行。基于实时网络数据库分析模型,加快建立模型的速度和减少模型数据输入的工作量,满足了供水调度的迫切管理需求。供水管网优化调度的重要环节就是建立调度模型,用以确定优化运行的决策变量值,其目的就是在满足系统约束的前提下,使运行费用最小。各类优化调度模型的正确是建立供水管网调度系统的关键,是实现系统优化调度工程的基础。 3.5供水管网调度系统特色 基于GIS与SCADA系统的供水管网调度系统有以下优点: l 统一的数据管理。将各种图形数据(矢量、栅格)和非图形数据(图片、文档、多媒体)集中统一的存放在关系数据库中。地物图形资料仅是系统中一种背景辅助资料,没有地物图形资料时,在系统图形资料的支持下,系统应用功能仍能照常运行,通常地物图形不经常变动, l 查询统计。提供多种手段对图形、属性数据进行交互查询,同时能对所选元素的某个字段按用户指定的统计分类数与分类段的范围,统计图元总数、最大、最小、平均值等。并可用直方图、饼图、折线图等多种形式显示。 l 管网编辑。系统提供完备的编辑工具,用户可以按自己的要求对管网空间和属性数据进行添加、修改、删除等操作。在编辑时有完备的设备关系规则库系统,确保编辑好的数据正确、完备,同时支持版本管理和长事务处理。 l 实时反映管网的运行状态.通过从SCADA中导入的数据,在每一条供水管网线路上可显示实时水压、水流、水质信息。 l 方案模拟.可在供水方案实施前确定前,在系统上进行模拟操作,系统从SCADA读入的运行参数进行水流模拟分配,并根据管径大小规格对水流进行校核,发现水压超过管径允许的范围时,便会报警,避免管道爆管。 l 故障定位.当用水用户出现停水时,只要报出用户名,就可在系统中上查出该用户的供水信息,以及阀门在地图上的位置。同时列出该阀门,为快速找到故障点,及时隔离故障创造条件。 l 发布停水信息.在关闭阀门时候,用户接口模块的地图上由该阀门控制的线路的颜色由红色转为黑色,并列出所有停电的用户。调度员可据此向电视台、传呼台发送停水范围和用户名称。 l 管网可靠性统计管理.在系统中每台泵站,阀门、线路有与用户明确的连接关系,因此,系统可以根据运行方式中断泵站、阀门起闭,确定线路的停水范围,自动统计并列出所有特殊用户的清单;并根据状态量的改变时间,确定该停水范围内的时间,确定停水户数。 l 老化计算。根据管线的材料、埋设环境、年限,维修次数等条件为参数,通过分析模型得出需要维修的管线的紧迫级别,并计算相应工时。 l 设备设施管理。 管理管网在运行过程中的设备维修、管网改扩建、设备运行等业务,主要包括巡道管理、听漏管理、报修管理,维修派工、停水关闸管理等,还有管网设备质量评估(为水司改扩建管网提供决策依据)和维修员工考核等。 四、结束语。 基于GIS及SCADA技术集成的供水管网调度提高系统中信息的质量,也增加辅助决策的理论基础。纵观整个系统,切实的提高供水企业的经济利益,具有良好的应用的前景。它使城市供水系统管理工作向科学化、现代化迈进了一大步,大大提高了工作效率并提高了调度水平,增加了供水管网运行的安全性,并使供水企业的生产费用下降。
清啦

247

积分

648

金钱

134

帖子

初级水师

162
发表于 2007-1-5 14:59:43 | 只看该作者

VR_GIS技术在数字流域中的应用研究

摘要:虚拟现实地理信息系统(VR_GIS)是一门综合虚拟现实和地理信息系统特征的新型技术,本文以三峡坝区虚拟查询系统的开发为背景,探讨了虚拟现实与地理信息系统的集成融合方法,并就应用VR_GIS技术实现数字流域构建的几个关键环节进行了探索和论述。 关键词:VR_GIS;数字流域 1 引言   “数字流域”是继“数字地球”、“数字城市”后提出的一个全新概念,它是一种集数字化、网络化和信息化等多种高新技术为一体的可视化计算机管理和应用系统,是以水系为纽带、以水资源的综合利用、流域环境保护与灾害防治等为核心,以流域开发的优化规划及可持续发展为基本目标的流域信息系统。该信息系统的支撑技术有:遥感(RS)、地理信息系统 (GIS)、全球定位系统(GPS)、虚拟现实 (VR)、网络和超媒体等等。如何将上述技术有机地结合在一起,是数字流域构建技术的关键问题之一。 虚拟现实地理信息系统(VR_GIS)是一种用于研究地球科学的、或以地球系统为对象的虚拟现实、计算机仿真、地理信息系统和多媒体等多种技术的综合体。20世纪90年代,Faust和Koller(1996)对地理信息系统和虚拟现实系统的集成进行了研究,并提出了虚拟现实地理信息系统的概念。VR_GIS把用户与地学数据的三维视觉、听觉等多种感觉的实时交互作为系统的存在基础,把传统GIS的空间分析与查询功能增加到虚拟环境中。虚拟现实与地理信息系统的融合,包含两者数据、模型和功能的一体化设计。这方面的研究意义重大,近年来受到了学术界和信息业界的广泛关注。   当前,以3S技术为核心的信息化技术已广泛应用于水利行业,成为流域规划管理不可缺少的组成部分。在这些信息系统中,对二维空间信息的描述,GIS的各项技术已较为成熟,但由于二维地理信息系统采用二维的方式表示实际的三维事物,具有很大的局限性,大量的多维空间信息无法得到利用。而近年发展迅速的虚拟现实技术,作为一种全新的人机接口技术,在信息表现与交互方面有着独特的功能。因此,VR与GIS的结合将有助于信息的综合表现。但VR与GIS 的融合不是两者的简单连接,而是从空间模型分析到空间数据库的结构直至三维数据的可视化,都必须进行系统的研究。虽然在这些方面已有许多学者进行了研究工作,商用GIS系统也相继加入了带有VR特点的模块,如Erdas公司的IMAGING Virtual GIS,ESRI公司即将推出的ArcGlobe等,但这些技术只是从总体框架上给出了一种解决方案,大量应用于流域研究的具体问题仍需探索,如GIS与VR的数据共享问题,将当前三维系统中的动画演示功能提升为实时交互功能的探索,VR与GIS的一体化设计等等。   本文以探索VR与GIS的融合及VR_GIS技术在数字流域中的实现为目的,以完成的三峡坝区虚拟查询系统实现过程为例,探讨VR_GIS应用于数字流域的关键技术及其实现方法。三维地形和实体建模采用MultiGen公司的建模软件Creator,数据库选用Access,在三维视景开发包OpenGVS基础上用VC编程实现交互性模拟与系统集成。 2 三维实体模型的建立   三维实体模拟的建立是整个虚拟场景建立的基础,模型的建立主要分三维地形的建模和其它三维实体,如建筑物、动植物、交通工具等的建模工作。这些模型建立的合适与否将直接影响虚拟场景的可视化效果和系统的运行速度,而建模工作自动化程度的高低也将和整个系统的开发周期与工作量紧密相关。   虚拟现实技术强调的是具有“沉浸感”的逼真显示和实时互动的效果,而逼真显示与实时互动两者对计算机硬件提出了很高的要求。特别在流域信息系统应用方面,许多情况下都需要处理大面积地形,众多地物的显示问题,庞大的数据量对硬件的要求是无止境的,因此,对所有实体都逼真显示的想法是不现实的,也不必要。在现有硬件水平的基础上,这一对矛盾聚焦于建模技术,而解决的方法便归结于模型的多重细节技术(LOD)和三维景观数据库技术。   在虚拟现实大范围的场景内,三维模型的数量很多,但大部分离视点很远,实际观察到的细节比较粗,可以用粗略模型代替,以减少总的计算量。在小范围的场景内,三维模型的数量会很少,虽要求很精细,但总的计算量不多,这就解决了视点在不同范围内模型计算量不平衡的问题。这种模型替代和切换的思想便是多重细节技术的基础。多重细节的构造包括单独的三维模型的多重细节、连续地形的多重细节、高精度影象贴图的多重细节。对于单独的三维模型,多重细节比较容易实现,它只需用不同精细程度的模型进行替换;对于连续地形的多重细节通过简单的替换是不行的,还需考虑连续地表距视点的远近而表现出来的精细程度的不同,这就需要将地形分层分块来构造多重细节,达到降低计算量的目的;为了真实再现地表景观,常常采用高精度的遥感影象作为地表贴图,这些遥感影象的数据量很大,所以对于遥感影象也要采用类似于地表模型的多重细节技术。   三维地形和实体信息庞杂,要精确描述三维模型,还要对模型的多重细节、截取组、分离平面、绘制优先级、材质、纹理贴图、行为等参数进行描述,这些必须依赖三维景观数据库技术。该技术可以对实时数据库进行极大的性能优化,常用的有OpenFlight,TerraPage等。本文所用到的Creator建模软件就采用OpenFlight格式文件。   建模工作的另一重要问题就是自动建模的研究,目前对地形的自动化建模发展较快,如TERRAEX公司的TERRA VISTA软件,在大面积地表自动建模和优化方面功能强大。Creator也提供了由DTEM数据自动生成地表模型的功能。在单个实体的建模方面,自动建模的方法尚不成熟,有待进一步探索。   本文的建模工作,地形部分由Creator提供的自动建模功能完成,包括纹理、光照和多重细节的实现,单个实体的三维建模,如大坝模型,则是在Creator中手动完成,图1、图2分别为大坝和升船机的实体模型。 3 数据库的建立与连接   要实现以虚拟现实技术为外部表现,地理信息系统为后台支持的虚拟现实地理信息系统,虚拟现实与地理信息数据库的连接是关键。当前,在水利行业应用的虚拟现实系统大多以构造具有一定沉浸感的三维场景为主,更多的具有动画演示的成分,而虚拟现实系统实时交互性的优势未能得以发挥。将虚拟现实系统与地理信息数据库中各实体的信息相关联,即将GIS的查询分析功能和虚拟现实的实时交互性通过数据库相结合,将是两者融合的前提和保障。   本系统采用Access为后台数据库,存储三维实体的各种属性信息,以实现基于虚拟场景中各种实体的空间定位,属性查询等功能。数据库与交互系统的连接通过ODBC来实现,其中三维实体与数据库中相应实体的属性如何一一对应是数据库设计和虚拟查询程序设计所要解决的关键问题。本系统的处理方法如下:以实体标识名为各个实体的唯一标识,Creator建模中,模型的各部分面和体的组织方式由模型结构树表示,结构树中每个实体组Group为一个单元,因此在建模过程中通过调整结构树,将每个独立的实体单元组织为同一个Group,并为该Group赋予唯一标识名,作为在虚拟场景中识别实体的标志。在系统交互中,运用OpenGVS提供的深度探测函数,可以获得鼠标所指向的三维实体结构树Group的标识信息,这就为与属性数据库的连接提供了接口。属性数据库的建立就是以实体标识为唯一标识而建立的,实体属性包括实体空间位置坐标及其他属性信息,可以运用数据库操作技术,SQL语言进行查询分析等各种操作。 4 交互式动态模拟与查询   如上所述,虚拟现实系统的特征之一便是交互性和构想性,即按照自己的设想模拟一些事件的发生发展过程,并通过用户与系统的交互改变环境条件而进行实时动态模拟,这就超越了普通动画演示的固定模式,具有更大的灵活性和实用性。在流域应用中,这一功能将应用于工程运行管理、水量调度、流域洪涝灾害、库区或洪水淹没等方面的模拟仿真。在本系统的动态模拟方面,主要针对三峡坝区探索了两种类型的动态模拟:柔性体流体的模拟和刚体模拟,同时也探讨了VR与GIS结合点之一的三维虚拟场景动态查询功能的实现方法。 4.1 流体动态模拟   流体的动态模拟属于动态环境模拟技术,它始终是虚拟现实技术的核心和关键问题,也是最难解决的问题。目前对于刚体运动的模拟比较容易,对于水这样的流体的模拟相对要困难得多,一方面要考虑模拟水体的真实性,又要考虑水体在地表流动的物理特性。常用的动态模拟技术主要有动作自由度描述技术、实体变形技术、纹理和贴图技术、粒子系统、分形技术、自定义的运动模型等等。以上模拟流体的技术各有优缺点,本系统中采用纹理贴图技术和粒子系统实现水流的动态模拟。   对坝区大面积的水域,采用连续调入具有流动感的水流图片来模拟流动,通过循环变换纹理贴图,实现水流的视觉动态效果。采用纹理贴图技术模拟水流虽然只能实现一般的视觉流动效果,但实现方法简单,对实时系统而言,系统消耗小,比较适宜于对流体模拟要求不高的大面积水域的流动模拟。   对大坝深孔、表孔泄流的动态模拟,采用粒子系统来实现。粒子系统是一种应用较多的模拟不规则模糊物体的方法,它能模拟物体随着时间变化的动态性和随机性,这是传统计算机图形学方法所不及的。粒子系统的基本思想是将许多简单的微小粒子作为基本元素来表示不规则物体,这些粒子都赋予一定的“生命”,在生命期中它们的“出生”、“运动和生长”及“死亡”通过随机过程进行控制。粒子系统对表现大量微小且不规则物体组成的动态景物(如云、火、水波、森林、原野、宇宙中的星体等)是十分有效的。本系统在泄洪模拟的实现中,将大坝的各个泄洪口设置成粒子的生成位置,对生成的粒子赋予一定的属性,如喷射速度,喷射角度,扩散角度,粒子受力,生命周期,初始颜色,终了颜色,粒子总数等等。每个属性的值P由均值和偏移量两部分组成:   P = MP + Rand( ) * VP . (1) 式中Rand( )是[-1.0,1.0]上均匀分布的随机函数,MP是属性的均值,VP是属性值的最大偏移量。粒子的消亡由生命周期来控制,粒子密度则由粒子总数和速度控制,粒子方向的改变由粒子受力控制,通过这些参数的合理调整选择,就可以模拟带有一定随机性的比较复杂的流体现象,大坝的泄流就是如此。图3、图4为泄洪模拟的效果。 4.2 刚体模拟   刚体模拟的实现相对较为简单,主要在于刚体运动规则的确定。本系统对三峡工程运行的主要部分行了模拟,如有升船机和船闸的运行模拟,坝区水位与相应淹没情况的模拟以及场景中实体的碰撞模拟等。 升船机运行模拟主要表现几个过程,船箱内水位与外界水位平齐,下游船箱门打开,船只驶入船箱,船箱提升至上游水位处,上游船箱门打开,船只驶入上游。该过程的模拟主要通过控制船只和船箱实体的位置以及组成部分(如船箱门)的旋转角度来实现。永久船闸运行模拟的实现原理与之相似。 由于地形本身是三维实体,因此带来许多相对二维分析的直观效果,如对于库区的淹没情况模拟,只需调整水位的高度,就可以直观的看出淹没程度和范围。   实体碰撞的检验是虚拟场景逼真化的一项重要措施,OpenGVS提供了检测当前实体正下方几何面高程的函数,通过对该函数的调用,可以实现物体的碰撞检测。如船只随水位而升降,汽车随路面而起伏的效果就是采用这种方法完成的。 4.3 三维动态查询   三维动态查询是指通过鼠标操作,对三维虚拟场景中各个实体的信息进行随意查询,该功能将虚拟场景中的三维实体与数据库中相应实体的属性信息(文本、图片、多媒体)连接起来,以实现信息的广泛集成与表现。作为VR虚拟场景与GIS信息查询功能相结合的产物,三维动态查询功能的实现对虚拟环境下多种信息的集成和互补有重要意义。   查询功能实现的关键在于虚拟场景中实体的探测选取以及实体与数据库内容的关联,本文采用OpenGVS提供的两点连线是否与实体相交的探测函数GV_geo_inq_intersection,通过检验视点与鼠标选择点之间相交信息的方法,确定当前鼠标选中的是哪个实体。该函数返回相交实体的标识名,如数据库连接部分所述,通过该标识名,就可以运用数据库查询操作实现相应实体的各类信息查询,并通过对话框之类的形式显示出来。由于该功能是在虚拟场景中直接操作,不需要切换到其他的视角或静态画面,因此可以在场景漫游过程中随意查询,不受画面限制,更具有自然交互的效果。 5 系统的总体集成   系统的总体集成是实现多学科交叉系统的难点之一,许多软件由于其本身功能和结构庞大,导致底层数据结构和功能修改困难,对底层的修改将牵一发而动全身,因此难以做到基于底层的统一设计和一体实现。本系统的总体集成选择了在视景开发软件包OpenGVS的基础上,运用VC自主开发的方式。OpenGVS支持OpenFlight、3DS模型格式,提供大量的C函数接口,对视景开发的效率很高。VC则是面向对象程序开发的强大工具。两者的结合不仅可以减少对图形显示的底层开发工作,而且可以通过VC编程实现底层的数据接口,使VR与GIS的功能更为自然地融为一体。   整个系统由Creator建立地形和三维实体的模型,处理多重细节、纹理材质、阴影、结构树分组命名等操作;Access实现后台的属性数据管理;由VC调用OpenGVS的各种绘图和实体操作函数完成整个虚拟场景的载入、视点视角的运动及相关的各种模拟,实现了基于三维虚拟场景的可视化互动查询和动态模拟的功能,模拟效果见图5和图6。 结论与进一步工作   虚拟现实地理信息系统是一门新型的多学科交叉的技术,有着广阔的应用前景,对虚拟现实与地理信息系统交叉融合和具体实现的研究意义重大。 通过三峡坝区虚拟查询系统开发的实践,对虚拟现实地理信息系统在流域中的实现方法进行了有益地探索。研究了虚拟现实与地理信息系统结合中数据库接口的实现问题,并对虚拟现实技术在流域应用中的交互式模拟及三维实体建模技术进行了研究。   VR_GIS技术作为一种年轻的技术,研究时间不长,许多问题有待解决。将VR_GIS应用于数字流域的构建,更需要大量结合专业的具有针对性研究工作,如将专业的计算模型与数据库和虚拟显示相结合,以提供科学的仿真模拟;完善数据库接口,使空间数据和属性数据跟三维实体的连接更为协调统一;进一步探索大地形、多地物、海量数据情况下系统的实现与运行问题等等,这些都是VR_GIS技术应用于数字流域极需解决的问题,也是笔者以后的研究方向。

247

积分

648

金钱

134

帖子

初级水师

163
发表于 2007-1-5 15:01:36 | 只看该作者

时态GIS 初探

[摘 要]时态GIS 是GIS 一个新兴的研究领域,目前仍处于理论与模型的研究阶段。文章总结了时态GIS 的研究现状,介绍了时间数据库与时空数据库的概念以及类型。在已有的研究成果基础上,归纳出了时态GIS 的主要功能,应包括输入、存储、编辑和更新,时空数据库管理,查询和检索,时空分析,显示和输出等功能模块。并提出了基于传统GIS 解决时间方面问题的一些思路。 [关键词]时态GIS  时空数据库 模型 地理信息系统( GIS - Geographic InformationSystem) 应用领域目前已发展到近60 多个,且用户数每年以2. 6 倍左右的速度增长, GIS 已经从实验研究进入实用阶段。计算机技术的迅速发展,使得GIS 的功能和特点也随之发生了巨大的变化,尤其是近些年来,计算机大容量存储介质、多媒体技术和可视化技术等相继被引进到GIS 中,已使GIS 发生了新的变化。三维问题、时态问题、数据质量、数据交换与OGIS、工程学问题、WebGIS、可视化与虚拟GIS、面向对象GIS、组件化GIS 以及数字地球等成为新的研究热点[1~7 ] 。本文将探讨时态GIS 的有关问题。 1  时态GIS 研究概况 GIS 所描述的现实世界是随时间连续变化的。传统的无时间概念的GIS 中的数据,只能是现实世界在某个时刻的“快照”。当被描述的对象随时间变化比较缓慢且变化的历史过程无关紧要时,可以用“数据更新”的方式来处理时间变化的影响。然而,在某些应用中,被描述的对象随时间变化很快(例如云量变化、日照变化等) 或者历史数据也必须予以保存(例如,地籍变更、海岸线变化、环境变化等) 。又比如,地球科学家想对某一时刻的所有地质条件或某一时间段内的平均地质条件进行评价,他们是否能容易地获得在“A 时刻的值”或“从时间B 到时间C 这段时间内的值”。为充分满足地球科学家的需要,这种时间数据获取能力应该与3D 模型相结合。许多人认为地质特征是不变的,但实际上大部分地质特征是动态的、变化的,不是所有地质情况都是变化缓慢的,水灾、地震、暴风雨以及滑坡都会使局部地质条件发生快速而巨大的变化。地质学家对4D(立体3D 加上时间第4D) 的空间- 时间模型尤感兴趣。在这些情况下,时间就必须作为一个与空间同等重要的因素引入到GIS 中来,这样便产生了时态GIS( TGIS - Temporal GIS) 或四维GIS 的概念。 时态GIS 或四维GIS 就是要在GIS 中考虑时间变化的概念,是指在原有的三维GIS 基础上加入时间变量而构成的GIS[8 ] 。其关键问题是建立合适的时间与空间联合的数据模型- 时空数据模型。Langran 作了TGIS 方面最早的博士论文[9 ] ,Lan2gran ( 1989 , 1993) [9~10 ] 、Worboys ( 1994) [11 ] 、Raper等(1995) [12 ] 、Donna (1995) [13 ]等分别提出和讨论了快照方式、复合方式和事件方式等来进行时态数据结构和数据库的设计并在时间和空间推理方面展开了研究,Raper 等(1995) [12 ]还设计了时空数据库查询语言。1996 年UCGIS(University Consortium forGeographic Information Science ) 将TGIS 作为“地理描述扩展”的一部分列入GISci 十大优先研究领域之列[14 ] 。TGIS 在国内外吸引了越来越多的学者进行深入研究。 当前主要的TGIS 模型包括,空间- 时间立方体模型( the space - time cube) ,序列快照模型( se2quent snapshot s) ,基图修正模型( base state with a2mendment s) ,空间- 时间组合体模型( space - timecomposite) 。TGIS 的研究重点主要在,时空数据库模型(如何设计并建立一个有效的数据库结构来存储时空数据) ,时空分析和推理(即如何根据数据库中的大量的时间序列数据和空间数据进行包括时间推理和空间推理在内的数据分析) ,时空数据库管理系统(目前主要研究的是时空数据库查询语言,而真正数据库管理系统层次的研究很少) ,时空数据的可视化研究(探讨不同时间数据的显示、制图和符号化) 等4 个方面。其中有关时空数据库模型的研究比较深入,而对时态的可视化问题,研究较少,过去一般借助轨迹线等方法描述地理数据的时态特征,现在的研究是向借助动画技术表述地理数据时间维的方向发展[15 ] 。 2  时空数据库 时态GIS 的关键是时空数据库模型,时空数据库是包括时间和空间要素在内的数据库系统,其建立依赖于时间的表示方法,目前的研究结果主要有全局状态标记(快照法) 、元组时间标记法和同步数据项时间标记法等几种方法。时间的表达并不是时态GIS 的目标,时态GIS 强调的是利用时空分析的工具和技术来模拟动态过程[16 ] ,探究和挖掘隐含于时空数据中的信息和规律,因此必须建立规范化的时空数据模型,而关于规范化时空数据模型的建立方法,目前还处在探索阶段。 2. 1  时间数据库 时间数据库的研究已取得了众多的成果[17~18 ] ,其重要性在于使数据库成为真正意义上的资源清单并且为动态监测和分析提供了丰富的数据。一般的数据库基本上不存储旧的、过时的数据,而时间数据库则包括任何历史数据,使数据库可以成为任何一个系统和部门的完整的电子信息档案库。它可以为分析提供横向的现势和纵向的历史数据,对历史、当前和将来进行对比、分析、监测和预测预报,从而为预测预报系统、决策支持系统和其他分析系统服务。时间数据库由于其动态性(过时的数据不再从数据库中删除,对历史数据也可以进行更新,使系统和现实世界一直保持着全方位的动态交换) 和全面性(可以提供任何时刻和时间段的数据)使之成为真正意义上的数据库。 时间数据库有若干种分类,根据数据库处理时间的能力可分为,历史数据库、卷绕数据库和双时间数据库,其中历史数据库只能处理实际时间,卷绕数据库只能处理数据库时间,双时间数据库可同时处理这两种时间。根据数据库存放的内容可分为,历史数据库、实时数据库和预测数据库。根据数据库的结构可分为,线性数据库、分支数据库和周期数据库。根据对象可分为,基于状态的数据库和基于事件的数据库。 2. 2  时空数据库 时空数据库是在空间数据库的基础上增加时间要素而构成的三维(无高度维) 或四维数据库。时间维的加入大大丰富了数据库的内容,一方面增加了数据库管理的复杂性,另一方面,海量的数据为空间和时间分析提供了极其广阔的舞台。 时空数据库模型有两种,基于矢量的时空数据库模型和基于栅格的时空数据库模型,它们是在传统的矢量数据模型和栅格数据模型基础上派生的。这两种模型均可处理6 种时间和空间的变化类型并对其建模, 这6 种变化是, 属性变化( attributechanges) ,静态空间分布(static spatial distribution) ,静态时间变化(static temporal changes) ,动态的空间变化(dynamic spatial changes) ,过程的转换(mutation of aprocess) ,和实体的运动(movement of an entity) 。 矢量型时空数据库模型建立在矢量数据模型的基础上。代表性的模型有STC[19 ]和STO[11 ] 。STC- Space - Time Composite 模型认为在空间上和时间上相同的内容为一个STC ,所有属性的变化都用离散时间记录,它以对象在空间(及属性) 的最大相同部分表示时间性,但不能表示物体的空间变化,如运动等。STO - Spatio - temporal Object 模型认为世界是由一个时空原子(Spatio - temporal Atom) 组成,时空原子为时间、空间和属性相同的均质实体,该模型中时间维是与空间维(在此模型中为二维) 垂直的,它可表示实体在空间和属性上的变化,但没有涉及对渐变实体(如连续的天气观测等) 的表示。STC 模型在每一次变化时均须重新建立拓扑关系,当变化很多时,将使拓扑关系的建立十分复杂,最终的多边形和弧段太多。STO 模型则需建立当时的拓扑结构,弧段和多边形的变化则采用连接表的形式表示。 栅格型时空数据库模型建立在栅格数据模型的基础上。典型模型有基于事件的时空模型Event -based Spatiotemporal Data Model ( ESTDM) [13 ] 和Oogeomorph[12 ]等。ESTDM 对栅格数据加上时间标尺来表示,该模型用一个头文件来存储栅格数据的专题信息,指向基础栅格数据的指针以及指向起始时间和结束事件列表的指针,用一个事件系列表示某一区域的空间动态信息,每一个事件都有一个时间以及该事件的内容并且该事件对应一个指定的区域,Oogeomorph 则采用面向对象的思想建模。 3  时态GIS 初探 时间的引入使GIS 的信息量大大增加,并增加了数据库管理的复杂性,传统GIS 已不能胜任,必须建设新的时态GIS ,而时态GIS 系统的关键是时空数据库的建设及时空数据库的管理,而这些与时空数据模型有关,目前仍是研究的重点。本文在总结已有研究成果的基础上,拟在此初步归纳出时态GIS 应具有的主要功能,尤其是在时间方面的主要功能,并提出在时态GIS 尚不成熟条件下,基于传统GIS 解决时间方面问题的某些思路,以供探讨。 时态GIS 的主要功能模块应包括输入、存储、编辑和更新模块,时空数据库管理模块,查询和检索模块,时空分析模块,显示和输出模块等模块。其中时空数据库管理和时空分析模块是时态GIS 所特有的功能,其余模块虽然在传统GIS 系统中也是具备的,但是在时态GIS 中也有其新的要求。 时空数据库管理模块应提供时空数据库的定义、时空数据库的基本操作(包括复制、删除等一般数据库操作) 及数据交换(包括与其他数据库、传统GIS 数据库及其他时空数据库的数据交换) 功能。其中时空数据库的定义与时空数据模型有关,一个合理的时空数据模型必须考虑节省存贮空间,加快存取、查询、分析的响应速度以及表现时空语义几个方面的因素,目前尚处于研究阶段。因此在目前条件下,要解决时态问题,可以在传统GIS 中引入时间概念,建立层次模型的数据结构(即时空数据结构) ,基于层次模型的数据结构进行数据的存取、访问、查询和分析。 空间分析是传统GIS 的核心,而时空分析是时态GIS 的核心。时空分析模块应包括时空数据的分类、时间量测、基于时间的平滑和综合、变化的统计分析、时空叠加、时间序列分析以及预测分析等[6 ] 。时空数据的分类指对时空数据根据不同的分类体系进行重组,派生新的数据。时间量测指计算并显示历史数据的时间。基于时间的空间数据的平滑和综合中平滑是根据对象在不同的时间的不同状态推测对象的中间状态,综合是根据一定的时间综合原则对空间数据进行合并。变化的统计分析指根据时空数据对变化的速度、频率、范围等进行多种统计分析。时空叠加分析是将不同时间的空间对象叠加在一起,主要包括,事件与事件的叠加、状态与状态的叠加、事件和状态的叠加。时间序列分析指对一个对象根据时间序列进行空间上的排列,这种分析主要针对同一个对象不能同时在不同的位置的现象。预测分析是一种基于多种数据运用数学模型根据某种目的进行推理的一种综合分析,如矿产资源的预测等。 输入、存储、编辑和更新模块是传统GIS 系统中也具备的模块,但是在时态GIS 中,该模块除能对常规GIS 数据进行输入、存储、编辑和更新外,还应能处理时态数据,包括历史数据和预测数据。在层次模型的数据结构基础上,一种直观的数据存储方案是将不同时期的数据分别作为一个数据层来进行存储,目前已有部分传统GIS 采用了这种方法。当数据层次较少时,该方法不失为一种有效的选择,但是如果数据层次较多,比如数据需要每天更新,则这种方法就不现实了。此时可以考虑采用时间标记法建立时空数据结构,记录地理要素的创立时间和消失时间,时空数据的更新则包括旧数据的保存和新数据的加入,旧数据的保存可以通过给数据记录添加消失时间来实现,而新数据的加入则可以通过在数据文件中添加新的数据记录并记录创立时间来 实现。 查询和检索模块应具备属性查询、空间查询、时间查询以及联合查询功能。其中属性查询、空间查询以及联合查询在传统GIS 中已相当成熟,时态GIS 中需增加的是时间查询及与其它查询的联合查询,这需要增加时间查询操作符,应包括时间连接操作、时间拓扑关系操作、时间距离操作、时空拓扑关系操作等查询操作符。如上所述,可以在传统GIS基础上,基于层次模型的数据结构进行与时间有关的查询和检索。 显示和输出模块应能实现动画显示、不同符号和颜色显示、立体显示以及输出。有效地显示并输出时空数据是时态GIS 应用成果的具体表现形式,如矿产预测应用领域的结果输出等。 4  结语 地理信息系统是当代科学发展的前沿领域之一,它已经或正在深刻地影响人类生产与生活的各个方面,其研究与应用是极其庞大而复杂的系统工程。而时态GIS 是GIS 一个新兴的研究领域,是实现数字地球的关键技术之一。相对于传统GIS ,时态GIS 具有语义更丰富、对现实世界的描述更准确等优点,其技术的本质特点是“时空效率”,而实现的最大困难在于海量数据的组织和存取。时态GIS的研究目前仍处于理论与模型的研究阶段,还没有实际意义上的成熟的应用系统,具有广阔的研究与发展空间,同时其研究成果也具有广泛的应用前景。

7024

积分

8935

金钱

2588

帖子

论坛顾问

164
发表于 2007-1-5 16:50:48 | 只看该作者

基于遥感与GIS的干旱区生态资产评估研究

基于遥感与GIS的干旱区生态资产评估研究
周可法1,2 陈曦1 周华荣1 张清2 左其亭1 张海波1 闫金凤1 陈川3
1. 中国科学院新疆生态与地理研究所, 乌鲁木齐 830011 2. 北京大学遥感研究所, 北京 100871 3. 新疆大学, 乌鲁木齐 830008
摘要:在3S技术的支持下, 利用地面Landsat TM数据、中巴卫星数据、气象数据和MODIS数据, 以及地表覆盖类型和野外测定观测等数据, 在景观生态学的基础上研究干旱区生态资产单位面积价值, 建立了基于遥感与GIS的干旱区生态资产价值评估模型, 并结合野外测验数据, 以2003年的新疆玛纳斯河流域为例, 将流域划分为4个生态资产区, 对其生态系统的生态资产进行了定量的计算, 并分析了生态资产空间分布特征, 编制了生态资产空间分布图, 分析了其空间分布特征. 结果表明: 玛纳斯河流域生态系统2003年的生态资产总价值为1494.54亿元人民币, 生态资产的分布具有从高山向平原、从绿洲向荒漠逐渐减少的趋势, 具有和干旱区植被地带性分布一致的特征. 测量结果更加客观地反映干旱区流域生态资产及其空间分布的现实情况, 为全面开展生态资产测量进行了初步的探索研究.
关键词:生态资产 GIS 评估模型 遥感测量
全文
订阅 收藏
参考文献: PDF file

12万

积分

2万

金钱

3万

帖子

论坛顾问

2016十年风雨同舟2012年度“十大风云人物”勋章财富勋章教书育人勋章无所不知勋章十大风云人物2011年度十大风云人物勋章季度优秀版主勋章

QQ
165
发表于 2007-1-6 14:18:32 | 只看该作者

GIS在环境科学与工程中的应用




GIS在环境科学与工程中的应用.part1

GIS在环境科学与工程中的应用.part1.rar

3.81 MB, 下载次数: 8

干啥别灌水!磕碜啊。
污水处理毕业设计论文在线求助与答疑
论坛已有资料,请自己下载,不接受pm索取。

12万

积分

2万

金钱

3万

帖子

论坛顾问

2016十年风雨同舟2012年度“十大风云人物”勋章财富勋章教书育人勋章无所不知勋章十大风云人物2011年度十大风云人物勋章季度优秀版主勋章

QQ
166
发表于 2007-1-6 14:21:40 | 只看该作者
GIS在环境科学与工程中的应用.part2

GIS在环境科学与工程中的应用.part2.rar

2.65 MB, 下载次数: 5

干啥别灌水!磕碜啊。
污水处理毕业设计论文在线求助与答疑
论坛已有资料,请自己下载,不接受pm索取。

12万

积分

2万

金钱

3万

帖子

论坛顾问

2016十年风雨同舟2012年度“十大风云人物”勋章财富勋章教书育人勋章无所不知勋章十大风云人物2011年度十大风云人物勋章季度优秀版主勋章

QQ
167
发表于 2007-1-6 14:25:29 | 只看该作者
干啥别灌水!磕碜啊。
污水处理毕业设计论文在线求助与答疑
论坛已有资料,请自己下载,不接受pm索取。

12万

积分

2万

金钱

3万

帖子

论坛顾问

2016十年风雨同舟2012年度“十大风云人物”勋章财富勋章教书育人勋章无所不知勋章十大风云人物2011年度十大风云人物勋章季度优秀版主勋章

QQ
168
发表于 2007-1-6 14:28:40 | 只看该作者
干啥别灌水!磕碜啊。
污水处理毕业设计论文在线求助与答疑
论坛已有资料,请自己下载,不接受pm索取。

1万

积分

5860

金钱

4894

帖子

铂金水师

QQ
169
 楼主| 发表于 2007-1-7 17:04:38 | 只看该作者

GIS-T Data Model 中文版下载

GIS-T Data Model 中文版下载: 第1部分 第2部分

1万

积分

5860

金钱

4894

帖子

铂金水师

QQ
170
 楼主| 发表于 2007-1-7 17:05:32 | 只看该作者

GIS的开发模式以及分析比较




独立开发 指不依赖于任何GIS 工具软件,从空间数据的采集、编辑到数据的处理分析及结果输出,所有的算法都由开发者独立设计,然后选用某种程序设计语言,如Visual C++、Delphi 等,在一定的操作系统平台上编程实现。这种方式的好处在于无须依赖任何商业GIS 工具软件,减少了开发成本,但一方面对于大多数开发者来说,能力、时间、财力方面的限制使其开发出来的产品很难在功能上与商业化GIS 工具软件相比,而且在购买GIS 工具软件上省下的钱可能还抵不上开发者在开发过程中绞尽脑汁所花的代价。 􀁺 宿主型二次开发 指基于GIS 平台软件上进行应用系统开发。大多数GIS 平台软件都提供了可供用户进行二次开发的脚本语言,如ESRI 的ArcView 提供了Avenue 语言,MapInfo 公司的MapInfo Professional提供了MapBasic 语言等等。用户可以利用这些脚本语言,以原GIS 软件为开发平台,开发出自己的针对不同应用对象的应用程序。这种方式省时省心,但进行二次开发的脚本语言,作为编程语言,功能极弱,用它们来开发应用程序仍然不尽如人意,并且所开发的系统不能脱离GIS 平台软件,是解释执行的,效率不高。 􀁺 基于GIS 组件的二次开发 大多数GIS 软件产商都提供商业化的GIS 组件,如ESRI 公司的MapObjects、MapInfo 公司的MapX 等,这些组件都具备GIS 的基本功能,开发人员可以基于通用软件开发工具尤其是可视化开发工具,如Delphi、Visual C++、Visual Basic、Power Builder 等为开发平台,进行二次开发。 利用GIS 工具软件生产厂家提供的建立在OCX 技术基础上的GIS 功能控件,如ESRI 的MapObjects、MapInfo 公司的MapX 等,在Delphi 等编程工具编制的应用程序中,直接将GIS 功能嵌入其中,实现地理信息系统的各种功能 􀁺 三种实现方式的分析与比较 由于独立开发难度太大,单纯二次开发受GIS 工具提供的编程语言的限制差强人意,因此结合GIS 工具软件与当今可视化开发语言的集成二次开发方式就成为GIS 应用开发的主流。它的优点是既可以充分利用GIS 工具软件对空间数据库的管理、分析功能,又可以利用其它可视化开发语言具有的高效、方便等编程优点,集二者之所长,不仅能大大提高应用系统的开发效率,而且使用可视化软件开发工具开发出来的应用程序具有更好的外观效果,更强大的数据库功能,而且可靠性好、易于移植、便于维护。尤其是使用OCX 技术利用GIS 功能组件进行集成开发,更能表现出这些优势。 由于上述优点,集成二次开发正成为应用GIS 开发的主流方向。这种方法唯一的缺点是前期投入比较大,需要同时购买GIS 工具软件和可视化编程软件,但“工欲善其事,必先利其器”,这种投资值得。 目前许多软件公司都开发了很多ActiveX 控件,合理选择和运用现成的控件,减少了开发者的编程工作量,使开发者避开某些应用的具体编程,直接调用控件,实现这些具体应用,不仅可以缩短程序开发周期,使编程过程更简洁,用户界面更友好,可以使程序更加灵活、简便。

1万

积分

5860

金钱

4894

帖子

铂金水师

QQ
171
 楼主| 发表于 2007-1-7 17:06:21 | 只看该作者

关于CAD和GIS集成解决方案

关于CAD和GIS集成解决方案: 几年前我发表过一篇如何从CAD移植到ArcGIS的文章,参见http://www.esrichina-bj.cn/library/arcnews14/new14-CAD.htm。但是在实际应用中,我们往往遇到的是CAD和GIS进行集成整合的问题,因此,在本文中,将主要从以下三个方面讨论CAD和GIS的集成解决方案。 一、 CADGIS集成应用的发展趋势 从目前主流的CAD和GIS厂商应用产品来看,CAD和GIS融合的趋势越来越明显,这也符合应用整合的发展需求。ESRI的桌面产品ArcGIS已集成了水晶报表、FME、PDF、Google等多项数据接口,对于CAD的数据集成也是各个版本全部集成。可以预料,只要有新的CAD版本出来,ESRI肯定会在新版本或以补丁的形式提供支持。而Bently公司更是推出MicrostationV8产品,号称提供DWG数据支持比AutoCAD软件做的更好,来强化不同数据格式间的融合。其实,在GIS的发展历程中,对于不同来源的数据整合从来就没有间断过,从OGC提供统一的数据规范,一直到各个软件厂商不断加强对其他数据格式的支持,可以毫不夸张地印证“数据就是GIS基础”这一不变命题。GIS到底是什么,能够为我们提供什么,这是很多用户迄今为止还在迷惑和深思的问题。投入巨大,收益又没有体现的特别明显,为什么?我想一个主要的原因,还是在于GIS的基础-数据这一关。GIS的发展从来都是一个系统工程,作为多源数据集成平台的角色也将越来越明显,因此各大厂商的集成整合方案都将是一个大而全的工具包,你想要的,以后将都会有。但是,我如果只是想喝杯奶,就非得养头牛吗?至少,我不用去开个养牛场才行吧。因此,对于很多应用而言,如何能针对目前的应用基础现状,提供一种切实可行的解决办法,才是用户真正需要和期待的。以下的讨论将主要就这个问题展开。 二、 CADGIS集成工具 1. ESRI ArcSDE CAD Client ArcSDE CAD Client是ESRI提供一款ArcSDE免费扩展模块,用来提供AutoCAD和Microstation访问SDE数据的接口,这实际上是ESRI没有强调的CAD、GIS解决方案,原因在于CAD Client不能编辑ArcGIS Geodatabase。但是,在许多应用流程中只需要创建一个简单的GIS数据库(Geodatabase所具有的高级功能如拓扑等并不是必需的),而CAD环境作为一个实用熟悉的操作环境(我更相信GIS作为一个系统工程中人的决定性,不仅仅对于系统开发者,更是对于系统应用者,想想有多少用户愿意费心思去琢磨一个新玩意),可以借助于ArcSDE CAD Client,从AutoCAD和Microstation中访问SDE数据,允许你从ArcSDE数据库查询和取出数据到你客护端的CAD会话中,此外,CAD Client也允许你编辑和存储ArcSDE简单要素(对于ArcSDE Geodatabase要素只提供读功能)。 CAD Client在安装完成后,将自动集成到AutoCAD和Microstation的应用界面中,并提供了5个接口函数来提供SDE连接/断开、数据取出、存储、查询和设置功能。它不是一个GIS应用端程序,不提供数据编辑和空间分析及制图等功能(这部分工作由CAD来完成,CAD Client只是提供了SDE数据源)。CAD Client实际上是基于ArcSDE3.X技术,因此对于后来的Geodatabase数据模型无法支持,只提供简单要素和CAD实体的存储。 目前,ArcSDE CAD Client提供对AutoCAD和Microstation主线产品所有版本的支持,包括AutoCAD2005、AutoCAD2006,以及最新的MicrostationV8。通常,用户在使用CAD Client时都需要利用其提供的5个接口函数,在CAD环境进行用户界面和应用流程定制。 2. Bently ArcGIS Connector和AutoDesk CAD Client Bently基于ESRI的Arcobjects技术,采用了离线编辑的方式来提供对SDE Geodatabase数据模型的支持,并可将数据编辑后返回给ArcSDE geodatabase。由于采用了ArcObjects技术,该工具将是比较庞大的,分发和部署将存在问题,由于该工具是作为Bently的一套完整解决方案提供的,因此从费用上而言是庞大的。此外,Autodesk也提供了一种CAD Client, 和ESRI的ArcSDE CAD Client类似,也是基于SDE C API技术。 3. Oracle Spatial扩展模块 Bently和AutoDesktop公司都提供了基于Oracle Spatial扩展模块的接口,可以对利用Oracle Spatial存储和管理的GIS数据进行访问,而Oracle

7260

积分

991

金钱

3319

帖子

黄金水师

172
发表于 2007-1-7 18:58:01 | 只看该作者
从CAD到ArcGIS
CAD和GIS的使用是不同的,然而需要在不同的环境中共享和重用数据是重要的。CAD文件作为GIS数据集合中的一个重要来源,本文将就CAD到ESRI GIS软件的转换介绍一些相关的工具和方法。   定义 首先来看看相关的数据类型说明。
  • CAD文件
常见的CAD文件有AutoCAD?的线画文件(.dwg),MicroStation?的设计文件(.dgn),Autodesk的线画交换格式(DXF),对于一个MicroStation文件这个文件扩展名是可变的。 CAD文件是由诸如颜色、线型、线宽、符号等静态图形特征组织后的图层集合,其图层并没有象GIS中的图层那样组织严密,实体/元素都包含在一个单一的文件中,属性数据的主要描述依靠图层和注记。不同的CAD软件版本对不同版本的文件格式有各自的实现(例如AutoCAD 13v,14v,2000v的线画是彼此不同的),这意味着你在进行数据处理时需要注意相关的版本。 DXF文件通常是作为一个ASCII文件,,也可以存为一个二进制文件方式。CAD文件除了存储静态的图形数据,也可以通过编码对应属性的方式来存储属性数据。在AutoCAD和Microstation中提供了方法用来操作CAD对象上的相关属性数据,这些方法中通常都有相关的标准,但有少量是用户自定义的模式,ESRI软件对这些自定义的属性模式的访问是有限制的。
  • Coverages
Coverages是一种矢量文件格式,几何和空间拓扑关系存储在二进制文件中,与之相关的属性数据则被存放在INFO表或RDBMS中(PC ArcInfo存储在DBF表中)。Coverages是对要素类组织后(feature class)的集合,每个要素类都是一些点,线(arcs),面或者annotation(文本)的集合,用于描述地理要素的Coverage要素类包括point,node,route system,section,polygon和region。一个或多个coverage要素被用于构造地理要素,例如arcs和node被用于构造街道中心线,tic,annotation,link,boundary要素类提供了对coverage数据管理和浏览的支持。
  • Shapefiles
Shapefile也是一种矢量文件格式,但和coverage不同的是shapefile文件不存储拓扑信息,因此相对其它数据格式要较少地占用存储空间,在显示和访问效率上要快许多。通常一个shapefile由一个主文件,索引文件和DBASE文件组成,在几何和属性基于记录号一对一对应,其数据格式ESRI已经公开。
  • ArcSDE简单要素层
ArcSDE将要素组织为要素类,一个要素类是一个/多个具有相同几何类型要素的集合,在SDE?3.0时的提法称为“layer”。一个要素是一个空间对象(例如一条道路)的几何描述,定义为一系列的X,Y坐标序列和几何的属性,要素被存储在表中一行就是一个要素。ArcSDE通过一个或多个表实现一个要素类,这取决于DBMS存储集合的列类型。ArcSDE不改变已有的DBMS功能或影响当前的应用程序,,它只是简单地在表中增加了一个空间列并为客户端应用程序提供了工具(C/JAVA API),实际上,它使用和补充了基本的DBMS功能。在ArcSDE中每个几何类型都有一个严格的验证规则集,用来检测一个要素在存储前是否几何化正确,在ArcSDE开发帮助中有对每种几何类型验证规则的描述。
  • GEODATABASE
一个geodatabase是DBMS中的一个空间数据知识库,它包含了矢量数据,栅格数据,表以及其它GIS对象。Geodatabase简称为地理数据库,是建立在简单要素层模型基础之上的。Geodatabase模型支持对象-关系矢量数据模型,在这个模型中实体被描述为对象,除具有属性外,还具有对象行为和对象间的关系。geodatabase支持在系统中创建多种地理对象模型,对象类型包括简单对象,地理要素(有位置的对象),几何网络和平面拓扑(对象和其它要素的空间关系)。Geodatabase模型允许你在对象中定义关系,使用这些规则来保持数据的完整性和一致性,这也是和它简单要素层的一个重要区别。 最简单的geodatabase模型是一系列独立要素层集合,每个要素层简单地包含点,线,多边形或注记,这和SDE3的SDE layers和ArcView的shapefile如何实现很相似。一个geodatabase可以由一个或多个要素类组成,而一个要素类则是一个或多个具有相同几何类型的要素集合,扩展的规则和行为被储存在一个附加表中,并且也由ArcSDE来管理。  

7260

积分

991

金钱

3319

帖子

黄金水师

173
发表于 2007-1-7 18:58:33 | 只看该作者
集成 对于使用和共享CAD数据ESRI提供了不同的策略,CAD/GIS集成的一种方式是将CAD数据作为GIS数据集,直接从本地文件读取CAD线画并作为一个有效的GIS数据源。
  • ArcView GIS 3.X(CAD Reader Extension)
ArcView GIS有工具来读取CAD文件作为有效的GIS数据源,这些工具直接读一个CAD文件到磁盘。当显示数据时,一个CAD文件被看作ArcView3环境中的shapefile GIS数据源。这个CAD读扩展支持以下的CAD图形特征和扩展的CAD属性:颜色,线型,级别/图层,块名/cell名,文本值,文件位置/handle,MSLINK,cell或块属性,线宽,高程和实体类型等。一个独立的线画在ArcView中被作为一个或多个主题,因为ArcView GIS只能工作在相同的几何类型主题中,它需要从CAD文件中提取四个有效几何类型(点,线,多边行,注记)来在ArcView中作为一个主题显示,每个CAD线画可以象其它主题一样在ArcView中被多次打开,这样就可以对CAD文件中的不同对象进行显示控制(如对一个线画文件中的道路,水管,水阀等根据需要进行符号化显示),类似的方法可以对AutoCAD或Microstation图层的可见性进行控制。 AutoCAD的块和Microstation的cell可被作为点,线或多边形几何的一个组成,当被作为点几何或它们的组成几何显示时,块属性和cell标记值将自动地包含在一个虚拟表中。
  • ArcGIS(CAD要素类和CAD线画层)
ArcMap也可以直接浏览CAD文件。ArcGIS有两种方法来对待此信息,第一种途径是CAD要素数据对象,这和ArcView 3.x中的CAD Reader Extension很相似。另外一种是作为一个单独的层显示CAD线画,用ArcGIS线画层你可以控制图层显示和查询对象。AutoCAD块和Microstation cell可被作为点或者点,线,多边形几何的组成来显示,块属性和cell标记值将自动包含在一个虚拟表中(当你在ArcMap中查找一个CAD对象时可以观察到)。在ArcGIS中将CAD线画作为一个CAD线画层打开时,实体CAD线画被作为一个映射层,因此它的符号是静态的不能被修改,只能用于ArcGIS分析或查找。 当CAD线画被作为要素数据对象时,ArcMap创建了一个CAD要素类,可以对该要素类进行查询和分析,使用ArcGIS中标准的符号编辑器来编辑要素符号。在ArcMap中,地理属性被作为一个图层来表达,当从CAD线画创建图层时,可以选择要表达的线画层。例如,你可能只想在地图上看到街道,街道名称。 在ArcGIS中可以直接访问多种CAD格式,包括Auto CAD的dwg(到2000版本),所有ASCII、二进制形式的DXF,dgn文件(到版本7)。此外,包含三维坐标信息的话也可以象在ArcMap中一样在ArcScene环境中显示。
  • ArcSDE CAD Client
ArcSDE CAD客户端是ArcSDE的空间数据客户端,允许用户依靠ArcSDE在AutoCAD或Microstation环境中存放或取出数据并进行编辑。CAD客户端能够通过多个ArcSDE服务同时访问不同DBMS中的数据,例如在同一时间访问一个ArcSDE for coverage管理的ArcInfo coverage数据,一个ArcSDE for Oracle管理的空间数据库,一个ArcSDE for SQLServer数据库,也能从ArcGIS Geodatabase中的简单要素层中访问数据。 相反地,当CAD数据被存储进一个DBMS时,GIS用户可以使用ArcSDE客户端(如MO,ArcGIS等)访问CAD数据的几何而不需要任何转换,每个CAD对象有一个翻译后的几何并作为一个有效的ArcSDE几何要素被存储。一些复杂的CAD几何,如椭圆,圆,块/cell等被翻译成一些ArcSDE客户端应用程序可以访问的几何。 CAD客户端存储CAD对象的一个二进制副本,它包括CAD对象的一切,象图形特征、块定义、块属性、标记、cell、x-data和其它自定义数据。一个CAD客户端用户可以访问所有ArcSDE管理的数据源,不管它在什么地方存放;同样,GIS用户也可以直接访问CAD客户端用户存储的CAD数据的几何,包括ArcIMS?软件。 ArcSDE CAD客户端访问ArcSDE for Coverages和Geodatabase只提供了读许可。   数据转换 CAD数据经常需要经过组织和处理后才能在GIS应用程序中可用,ESRI提供了不同的转换工具来帮助用户在GIS和CAD间更好地使用数据。
  • ArcView GIS 3.x-保存为shapefile
ArcView GIS 3.X(CAD Reader Extension)有一个内嵌的集成工具,根据属性/空间选择标准从一个CAD文件中选择一组空间要素,选中的对象集可以导出为shapefile。使用这个功能,ArcView 3.x能够转换CAD文件的CAD对象到ArcView GIS shapefile格式中。
  • ArcGIS ArcCatalog-Simple Data Loader
在ArcCatalog中选中一个要素类并右击鼠标选择选项时就打开了Simple Data Loader向导工具,该工具提供了增加数据到已有要素类的方法。按照向导提示,你可以选择一个要导入的CAD数据源,然后向导将允许你映射CAD图形属性值到已有的数据库字段。另外该工具还提供了查询功能用来对导入源实体进行过滤,然后选中的信息导被增加到要素类中。在运用该工具前,地理数据库的要素类必须事先存在。
  • ArcGIS:ArcMap-Export Data
从ArcMap中使用Export Data工具,一个选中的CAD要素集可以被导出为shapefile或导出进一个空的geodatabase要素类中。在ArcMap中选择要导出的CAD要素层,点击鼠标右键选择Export菜单,缺省的保存方式为shapefile类型。在ArcMap中CAD文本的转换在操作上有些不同,因为ArcMap中的CAD线画文本被作为一个混合的coverage annotation类型显示,因此必须使用转换coverage annotation功能来取得CAD文本,导入作为geodatabase annotation。这个工具没有在ArcMap标准工具条显示,需要你在从Label菜单选择加入到你定义的界面上。
  • ArcGIS:ArcMap-裁剪和粘贴
加载数据到geodatabase要素类的另外一条途径是在ArcMap编辑会话期间使用裁剪和粘贴功能,然后就可以将选中的数据一个具有同样几何类型的geodatabase要素类中。该方法和ArcCatalog-Simple Data Loader都允许你往一个已有的要素类中增加数据。
  • ArcGIS:ArcToolbox-CAD到Geodatabase转换工具
ArcGIS提供了一个CAD到Geodatabase转换工具来转换CAD数据到新的geodatabase要素类中,该工具在ArcToolbox和ArcCatalog中都是可用的。ArcToolbox转换工具允许你定义一个查询来选择CAD对象,然后转换并保存查询结果集到一个新的geodatabase要素类中。不象ArcMap中使用的方法保存数据是到一个已有的geodatabase要素类中,ArcToolbox的转换工具将创建一个新的要素类作为转换过程的一部分,这样一个包含多种图形特征的CAD文件全部导出时会创建多个要素类。如果需要将多个线画转出到一个geodatabase的要素类中,你需要在ArcMap中使用Geoprocessing Wizard来对要素类进行合并。 使用CAD to Geodatabase Translator功能,CAD文本将被转换到一个点要素类中。在CAD要素上的变化曲线信息在转换进geodatabase被保留,CAD几何特征和块/cell属性也在转换过程中被保留。
  • ArcSDE CAD Client
CAD客户端也可以用于数据转换,在CAD数据到ArcSDE管理的DBMS存储过程中,CAD客户端工具将翻译没个CAD对象的几何并产生相应的ArcSDE要素,而其它ArcSDE客户端可以直接浏览这些ArcSDE要素不需要转换。   移植CAD到ArcGIS 关于从CAD移植到ArcGIS,通常包括两方面的内容:一是CAD到ArcGIS数据的转换,二是CAD到ArcGIS应用的转换。从CAD数据到ArcGI的转换,前面已经做了介绍。因为ArcGIS Geodatabase模型是建立在简单要素层基础之上的,所以CAD到Geodatabase数据的转换通常是先转为简单要素层,之后在按照Geodatabase模型的定义进行要素类组织合并,定义域,子类型,关系,几何网络等规则。从CAD到ArcGIS应用的转换目前主要集中在数据的原始表现上,因为要用到ArcGIS强大的功能必然要对CAD数据进行转换,但也因此以前在CAD环境下的看到数据在ArcGIS环境下“变了样子”,这主要由于各自系统对数据表现方式和相关符号库的不同,数据本身并没有丢失。此问题的解决目前主要集中在两个方法,一种是程序实现不同系统符号库的自动转换,在数据转换时完成相应符号库的转入。另一种是对数据进行前期处理,个人觉得这种方法更具有现实性和易操作性一些。这就是先对CAD数据进行编码处理工作,使CAD符号能够根据编码进行区分,然后利用ArcGIS强大的符号编辑器重新制作CAD相关的符号,之后在ArcGIS应用中书写程序根据编码规则匹配相关的ArcGIS符号文件进行显示和编辑等。

7260

积分

991

金钱

3319

帖子

黄金水师

174
发表于 2007-1-7 19:10:44 | 只看该作者

广州市“数字市政” 核心系统一期GIS系统通过验收

广州市“数字市政” 核心系统一期GIS系统通过验收
 
中央电视台《新闻联播》关于广州市“数字市政”的报道
广州市市政园林局“数字市政”核心系统一期地理信息系统已于4月初进入了实际应用,并于日前通过专家评审验收。 目前,“数字市政”核心系统一期地理信息系统经过一年多的试运行,已建立了基础地理信息数据库、综合管线数据库、自来水管网专业数据库、 燃气管网专业数据库、 市政排水和污水管网专业数据库、 市政道路和桥梁专业数据库、 园林绿化等几方面的专业数据库。 “数字市政”核心系统一期项目,把广州市市政园林局行政管理与全市市政设施有机的结合在一起,以统一管理,综合考虑的思想为指导,利用先进的计算机辅助技术,地理信息(GIS)技术建立了广州市市政设施管理信息系统, 并具有分析和决策功能。目前“数字市政”已集合了数万份全市自来水、煤气、道路、桥梁、排水管线、园林绿化等专业图纸及数据信息,具备了数据存储、信息共享、信息展示、服务访问以及安全保护等各项业务功能。为市政建设、养护管理以及应急抢险提供了科学、便捷的信息化管理平台。 广州市市政园林局有关负责人介绍,第二期“数字市政”系统开发仍然是“以用促建”,重点加强基础地形数据建设和市政设施专业数据建设,尽快实行数据的动态更新,推进在市政园林与公用建设管理领域中的全面应用。 从2004年起,广州市市政园林局就提出统一信息平台的理念,开始着手建设“数字市政”,对城市供水、燃气、排水管网以及通信、电力线网和城市道路组成的城市市政系统各方面内容进行全方位的数字化处理,并建设一个数字化的城市公用基础保障供给领域的统一信息系统平台。经过多方调查及招投标,最后采用了ESRI公司的ArcGIS产品作为地理信息平台来构建广州“数字市政”系统。 据介绍,目前世界上尚无一个人口达千万级的城市将市政公用设施系统的基础GIS数据完全集成并统一提供信息服务的先例,广州无疑开了先河。
[ 本帖最后由 C.water 于 2007-1-7 19:13 编辑 ]

6万

积分

4001

金钱

4834

帖子

超凡水师

2016十年风雨同舟

QQ
175
发表于 2007-1-8 09:22:01 | 只看该作者
好东西,就是不懂!
水世界,您我视觉的窗口、合作的平台。
有意的朋友请加入我们的行列。
论坛:http://www.chinacitywater.org
QQ:114216739
非诚勿扰!

6万

积分

4001

金钱

4834

帖子

超凡水师

2016十年风雨同舟

QQ
176
发表于 2007-1-8 10:26:25 | 只看该作者

GIS论文大全

GIS论文大全

GIS论文大全.rar

2.87 MB, 下载次数: 56

水世界,您我视觉的窗口、合作的平台。
有意的朋友请加入我们的行列。
论坛:http://www.chinacitywater.org
QQ:114216739
非诚勿扰!

247

积分

648

金钱

134

帖子

初级水师

177
发表于 2007-1-8 18:09:38 | 只看该作者

GIS in Business Processes

Abstract Geographic Information Systems (GIS) are becoming a part of mainstream business and management operations around the world in organizations as diverse as cities, state government, utilities, telecommunications, railroads, civil engineering, petroleum exploration, retailing, etc. in private and public sectors. This array of institutional types is integrating GIS into their daily operations, and the applications associated with these systems are equally broad from infrastructure management, to vehicle routing, to site selection, to research and analysis. This paper presents a point of view regarding the place and the importance of GIS in Business Processes, with a few simple examples and mentioning the most important trends in our point of view: extending business intelligence with geographic information systems. The framework proposed in this paper refers the process of collecting and creating knowledge within the organization such as Intelligent Community, represented here by City Hall. The application area used in our examples represents a good example of the organisations, which exhibits the characteristics of a modern organisation. Work performed in these organisations requires knowledge sharing, reuse, exploration and reflection. Preliminary results indicate the utility of the proposed framework, as well as opportunities for further development, including its suitability for generalisation to other areas. In the last part of this paper are presented the trends in the evolution of GIS, Business Processes and Business Intelligence and some conclusions. Much Geographical Information (GI) data already exists, most often collected by public organizations in the framework of their mandated management activities, focused on the needs of GI users and potential users, better understand and demonstrate the potential of multimedia GI content for economic development and for the improvement of commercial and public services to the citizen. Many of these organizations are beginning to explore the use of Geographic Information Systems (GIS) in their decision making processes by generating maps that convey information gleaned from their respective databases. Spatial display and analysis will be important in many workflow scenarios. Over the last decade we have confronted with a lot of examples of GIS applications that have produced useful spatial data products for different organisations from public to private sectors. The applications have clearly been beneficial but most of organisations are still facing with the challenges of implementing applications of GIS technology, as suggested by on-going popularity of 別nterprise GIS? 凣IS data sharing? 刴ultipurpose GIS? 刴ulti-participant GIS?terms. In this context, the GIS world is confronted with three major problems: what is the best movement beyond GIS implementation practices of today in order to reach/discovery the future best practices; where will keep getting new ideas for improving the implementation of GIS applications to adapt to a continually changing world; what is the best way to understand and exploit the new GIS possibilities due to the dramatic developments in information technology and communications (high speed networking, data compression, complex spatial data types, etc.) which can enable significant organizational improvements. In order to progress on those problems, the hope is to develop a more systematic theoretical foundation for understanding of GIS application implementation within and among organizations. According to [1] ?..one of the keys to this better foundational understanding is to do with the business processes (and their tacit/explicit knowledge content) which GIS aims to improve ?Finally, we need some way of judging which processes are likely to be improved in which situations with the applications of GIS. In other words, improving GIS implementation is highly dependent on being able to adequately and properly capture the embedded tacit and explicit knowledge in business processes and apply them through GIS? Business Processes A lot of different procedures for identification and improving business processes have been developed and tried by businesses with varying degrees of success. Some of the most notable earlier procedures include Porter抯 Value Chain and Total Quality Management (TQM), which were used during the 1980s. Business Process Reengineering was popular during the 1990 decade. The 1990s also saw the emergence of the Enterprise Resources Planning (ERP) package software systems most of these procedures are actively evolving. For example, TQM is being replaced with Six Sigma methodology; Business Process Reengineering is evolving into Business Process Redesign [4]. Other processes such as Continuous Quality Improvements, Management by Objective, Management by Walking Around, Customer Focus Management have also emerged [8]. The use of information and communications technology and Business Process management is becoming a core competency that every business must have in order to function in today抯 global and highly competitive business environment. All of the various business process improvement procedures are merging into the single discipline of Business Process Management. In [2] is presented a useful list of four major business processes including: business process improvements, business process reengineering, technology transfer, and process standardization. Harmon [4] completed a similar list, which include the following three processes: improvement process, process redesign, process reengineering. In today抯 world, business is acquiring the new information management technology through the purchase of commercial off-the-shelf (COTS) solutions. GIS solutions are part of COTS solutions because in business areas, it is not affordable to develop and maintain custom software that closely matches their business processes and requirements. The COTS solution is then configured or tailored to match, as closely is possible, the existing business processes. But a perfect match is not possible and adjustments must be made. Developing custom software models or application to be used with/in a COTS solution to accommodate the existing business processes is a dangerous approach that often leads to time consuming and additional cost and there is no guarantee that custom modules and/or application will work with COTS. Adjusting business processes and practices to match the capabilities and functions of the new technology is a much more reasonable approach. Developing more efficient business processes is often the best way to reduce costs and improve efficiency. Developing workflow to provide information and data to the users when they need it can avoid time spent looking for the information or waiting for the information to arrive. Most of the major COTS evolving GIS solutions incorporate industry accepted best practices and implementing these practices as part of the COTS implementation could provide additional efficiencies. In actual practices most businesses use a combination of custom application and business process modification to implement a new COTS solution. Although GIS is often viewed as a technology project and an arena for the technically sophisticated computer professional, the development of a successful enterprise GIS is dependent more on proper management participation and supervision than on technical solutions. Some examples Regarding Romania, as in most of other countries, government agencies in charge of geographic information have the combined challenge of improving performance, learning to cooperate through partnerships within the limitation of budget restrictions, and satisfying increasing user demands. Otherwise, they will be unable to accomplish their goal of providing valuable information to support increased knowledge and national policy. For specialized domain of geospatial solutions implemented in Romania, the project developed by Intergraph Computer Services, Romania, at the City Hall of Bucharest (CHB) is a focal point. By the content area of solutions, by the complexity of solved problems and by the degree of information抯 integration and geospatial functionalities in the framework of integrated information system of the institution, this project is unprecedented in Romania. This complex system has been awarded, in 27 April 2005, in San Francisco, USA, with Intergraph抯 2005 Geospatial Achievement Award for the component named Urban Data Bank. At the beginning, the problems have been approached as 損uzzle? the financial department with his own solution, the urban planning department with his own solution etc. In short time turn up the fact that is necessary a parallel approach of all domains of activity, planified and integrated. In the first step, the Urban Data Bank (UBD ?the official name of the solution) serves for 43 departments of CHB, where is needed the visualization, analysis or designing of geographic information (GI) in more than 200 different work processes. The surprise for both teams: the team of supplier and the team of beneficiary, during the request抯 analysis has been the discovery of GI users in the unexpected places, in addition to the traditional directions responsible for cadastre, property, urban development or infrastructure management within a city hall. This example prove that the definition of an enterprise GIS should not be measured by traditional numbers of layers, feature classes or departments whose spatial data has been captured. Having the information is only the first step in building an enterprise GIS. Another example, the employees of an office for administrative documents archiving discovered that by using the access to spatial data from UDB, shorted and simplified significantly the processes of finding the old documents advanced more years ago. Or, the secretariat responsible for the advancing of authorization for public meetings deployment, based on the spatial analysis of the information managed by CHB, may identify the conflicts between the requested route adopted by demonstrants and other activities on territory of the city. In this framework, few years ago, most of 300 employees being no users of GIS, today becomes current users of geospatial information. Much more, in order to avoid the bottleneck generated by vectorization by few GIS specialists of graphical elements needed for daily workflow in 43 departments, the graphical edition it is not the monopole of 揋IS Office? (does not exist in CHB) but it is the responsibility of primary user抯 information, whatever in what department is placed. With other words, an enterprise GIS should be defined and measured simply by the number and percentage of people in the organization utilizing GIS on a daily basis to accomplish the core business process of the organization (CHB). And the mainly question could be reformulated as: are the day-to-day business processes carried out by the people working at the front counter, answering the phone, going out into the field, processing the back office information and paperwork, collecting the data necessary to make a decision or managing the people who accomplish all of this using GIS? The first step to answer is given by the formulation and acceptance of new concepts. In the building of the CHB solution, the starting point has been the fact that for this 搉ew comings?in geospatial world the accuracy and correctness of the location of geographic elements it is not critical ?anyway, not in the same degree as for cadastre ?and for this reason it is not necessary the special training in topography, geodesy, cadastre, etc., for the vectorization of element. In this way we are confronted with the 揳pproximate geometry?and 揺ditors for approximate geometry?terms in a graphical environment based on web technology. In the special cases, approximate geometry, if necessary, generated by simple user but managing workflows depending on the geospatial components, will be checked and corrected by GIS specialists from cadastre department. Another example is how to assign the post number. In order to understand how work in CHB, we can analyse what happen at the assignment of postal number and the advancement of appropriated certificate (without this document no more works to do in Bucharest). In the specialized department responsible for this workflow there are no topography or geodesy specialists and, in this case, was necessary to work on the paper maps, in order to mark with red pencil on 1:500 plan, the property entities for what has been advanced a postal number certificates, according to the documents of requesters. By implementing UDB, in addition to the employment of information support of data recording, the property entities are loaded also in graphical way, with 揳pproximate geometry? precisely by the same employees processing the requests and certificates. Later, the specialists from cadastre will correct or revectorize these elements based on the measurements. Hardly now will be closed the whole workflow which is moved to two departments during some months but in the transition phase facilitated the access to the vital set of information: there is a property entity, located on the street x, at the postal number y having an owner Z for what has been advanced a series of documents for consultation. Who know the implications of those information in the current activity of city hall, the difference between an information marked with red on a plan from a cupboard in one department and the same information from database, accessible to all departments, even in the 揳pproximate geometry?step, discovery the consequences and the benefits of a distributed geospatial solution at the level of whole institution. Building GIS into the business process does not mean that someone somewhere in the organization uses GIS to move the process along, but that each person involved in the business process who needs land records information uses GIS technology to move the business process along. Building GIS into the business processes of an organization is a really challenge. The technologies used in these business processes must be capable of integrating with and using GIS technology. One approach to expanding the use of GIS in business processes is to simply give access to GIS tools to the people involved in the business process. This can be accomplishing in one of several manners. The most popular two methods are to put a desktop GIS application on each computer or to provide web access to the GIS for the people in the business processes. But in order to be effective it is necessary to have and to use a spatial/geographical data infrastructure at appropriate level (local/national/regional). Replacing core business applications or integrating GIS into them is not easy and may be expensive. In fact, the vision of an enterprise GIS being defined in terms of numbers and percentage of users instead of the amount of data or number of layers should be the guiding statement towards achieving the efficiency in business processes because will provide a maximum return on investment made in GIS, placing the benefits of GIS into the hands of the people who most need to make daily decisions using spatial information in decision making and integration tasks are well documented and the advantages should be put to use. 揊or those specialized in operations developed at the level of (big) city hall, this level of complexity in IT problem it is not to shock and the decision of this city hall in order to propose an ambitious project and to develop such complex system for information management, it seemly to be a natural consequence of the solution of awareness problem. But for somebody accustomed to the slowness of movements in Romania in general and in public sector, in particular, the existence of such a project could be amazingly, and CHB as institution should be revolutionary?[5]. But CHB is not alone as client waiting for GIS to extent the functionalities out of the departmental limits and to be the glue of information management systems and workflows of whole organization in order to become a tool offering general coherence in the management of organization. 揂n IT system for the management of 389 data levels with more than 4000 different characteristics at the whole organization level, seems to be a singular demand in the IT scenary of the Romanian public administration. But on the geospatial solutions market, systems like the above mentioned one trends to become a standard and paradoxically, Romania can be qualified as one of the most demanding GIS markets in the world. The public administration systems in the advanced countries inherit old systems, implemented one by one 10-15 years ago in order to solve departmental problems. For a Romanian complex projects, the main challenge for the solution supplier is to shape the daily work flow of the organization within the IT system, but also to integrate ERP or CRM systems with geospatial databases into one functional solution. The Romanian customers often requests the integration of the data pertaining to various processes into a single database that would feed information to a variety of automated systems and applications. The result will be a relational geographical inventory of all infrastructure components, digital geographical maps generated at all users level, more effective work flow management, better operations organization and, by all means, cost monitoring. This is why geospatial solutions are the implicit part of an integrated system, and the geospatial information has to be considered the foundation of an effective management based on an integrated decision system.?[3]. Partnership The complex systems such as the system for CHB and the system of City Hall of Oradea outlined that is necessary to be developed in more than a single step. For the project regarding the management of the geospatial development of the metropolitan area, according to [7] in the first step was necessary to create the Local Council for GIS from the City Hall, water, gas, electrical and thermic energy providers and only few branches of some national agencies. Latter has been added the cadastre office, environmental agency and private companies. This approach leads to an active solution of the problem of centralized administration of a city in developing but also for the request concerning the integration in the management of the locality and management of the neighbourhoods. The role of prototyping Such ambitious project it is not possible to be developed only with local funds. In 1998 the team initiated a pilot funded by SALA (the Federation of Municipalities from Sweden). The results of this project constitute the starting point for an exclusive financement from Local Council of Oradea until 1999, when has been obtained the first co-financements from the Ministry of Public Works and Land Administration. The project beneficiated by the in-house development, reducing the costs. In additional, the Flemish Government supported the implementation by IMIS (Infrastructure Management Information System) and City of Linkoping from Sweden, the Research Triangle Institute (RTI), Hemmis and City of Warregen from Belgium got the consultancy [7]. The technical solution has been the GeoMedia from Intergraph Co. Standardization It is know the fact that in an intelligent community, such as a City Hall, in order to communicate geographically it is necessary to define, adopt and to adapt some standards. In this idea and because the technical solution belong to Intergraph Co., the natural extension has been the development of a 揗ethodology for establishing the unique standards in urban planning and land administration with a view of the employment of GIS at the level of City of Oradea?referring the implementation of an information system for urban planning and running as tool for improvement of efficiency; control of urban development in City of Oradea; enhancing the exchange of information in real time between the users, free of used software platform; protection of the historical ensembles and monuments; decision support at the local level; decision transparency growth at local level [7]. Trends In September 1996 a Gartner Group report use the term of Business Intelligence (BI): 揃y 2000, Information Democracy will emerge in forward-thinking enterprises, with Business Intelligence information and applications available broadly to employees, consultants, customers, suppliers, and the public. The key to thriving in a competitive marketplace is staying ahead of the competition. Making sound business decisions based on accurate and current information takes more than intuition. Data analysis, reporting, and query tools can help business users wade through a sea of data to synthesize valuable information from it - today these tools collectively fall into a category called "Business Intelligence." It is important to mention that BI is not a single application. It consists of a series of components that interact behind the scenes to extract electronic data, assemble it, analyze it and display it in a form that is easy to work with and understand. These components include a database; an Extract, Transform and Load data tool; analytic tools; reporting/querying tools; training. In [6] is presented a point of view regarding the synergistic power that can be exploited by extending business intelligence with geographic information systems, based on the scope, the fundamentals, and the commonalities. Each of the functions of BI and GIS suggest four areas in which research and applications should focus: human resources, data management, decision making and collaboration, and planning systems. Conclusions The need for coordinated and collaborative business processes is changing the face of how these processes are modeled, executed and managed. GIS is important in BI because most business problems include significant spatial components and GIS enables decision makers to leverage their spatial data resources more effectively. Customer Relationship Management, Enterprise Resources Planning, Supply Chain Management, and more others are acronyms for some solutions designed to extract and analyze information from data warehouses and allow decision-makers to perform at a higher level of efficiency. But data on it's own has no value. Without simple visual ways to integrate, display and analyse, it is possible to end up with massive amounts of data but no information. From a particularly point of view, the geo-spatial data and maps managed within an enterprise GIS represent a kind of common 搇anguage?that is understood within and across organizational boundaries. This 搇anguage?has the power to weave together and integrate traditionally disparate business functions. Each of these diverse functions is ultimately dependent upon the location and spatial relationships between real property, assets, and people.

247

积分

648

金钱

134

帖子

初级水师

178
发表于 2007-1-10 18:01:57 | 只看该作者

A GIS Assisted Knowledge-Based Approach for Military Operations

Abstract Military history is full of incidents wherein a smaller army having a good knowledge of the terrain has defeated a much larger well-equipped and organised army. Nearly, all military activities are terrain sensitive and need careful planning and reconnaissance to ensure success. However, planning of military operations is a complex process and is guided by the experience and capability of the commander and his staff who provide the necessary inputs to him. This decision making process can be made intelligent by developing Knowledge Based (KB) expert systems. In this paper, a knowledge-based approach has been used to produce a number of thematic maps useful for various military operations. The approach developed is capable of taking inputs in the form of data layers that may be generated from satellite images, aerial photographs, topographical maps or other ancillary data. Some common military operations such as selection of sites for bridges, ferries and helipads, identification of tactically important roads and vehicle mobility movement are considered. The development of such knowledge-based approached shall tremendously assist the military commander to provide efficient and real-time information in an organized way for any military task. Introduction With the present cold war situation between India and its adjoining neighbour, the defence forces have to be on alert at all times. Any emergent situations means that the army has to move towards the border at a very short notice. The modern battlefield is highly mechanized with heavy arms and ammunitions to shift around. The mobility of any armoured column depends upon the terrain conditions over which it has to move. Ground conditions have always played an important role in all conflicts over the ages. The parameters like topography, soil type and land use land cover have a direct bearing to key activities like mobility of both men and machines, methods of crossing obstacles, selection of tactically important areas etc. Logistics also play an equally important role as weapons in a war. Replenishment of ammunition, fuel and other supplies are required to reach the fighting troops in time. These require careful planning in terms of routes to be taken and movement of various types of vehicles to ensure success. Thus, in today抯 modern battlefield, speed of planning and execution of operations is of prime importance. Fortunately, we are living in an Information Technology (IT) era where the dissemination of information from one place to another has virtually become real time. The IT tools can be sufficiently exploited for any challenging task such as planning of wars. Remote sensing, Geographical Information System (GIS) and artificial intelligence technologies are sitting on the top of these IT tools that can together be effectively utilised to develop intelligent systems for war planning. Command, Control, Communication, Coordination and Information (C4I) is one such system where these technologies can be effectively used. For example, satellite remote sensing data can be used to generate a wide range of products such as land use land cover maps, obstacle maps, slope maps, road mobility maps, line of sight plots etc. A GIS can receive, process, create, store, retrieve, update, manipulate and compress digital terrain data to generate a number of products. Knowledge of experts is a key input for any C4I system. Knowledge Based (KB) systems are being developed for war planning that can process inputs from remotely sensed and GIS derived products and use the knowledge gained to aid the decision making process, thereby allowing the military commanders make better battle plans. GIS embedded C4I systems aim to give this KB to field commanders and their staff who despite having little knowledge of GIS, can work on such systems. Currently only a few C4I systems are in use with embedded GIS, but their numbers are likely to rise substantially soon as more and more systems are developed around the world. This paper presents a study on the use of a GIS assisted knowledge-based approach for some military operations such as selection of sites for bridges and helipads, identification of tactically important roads and preparation of vehicle mobility maps. Some common military operations The commanders have to carry out careful planning of a range of activities required during any military operation in war. Some of them are: Selection of Sites for Launching Bridges To provide mobility to ground forces across water bodies, two types of bridges are generally employed by the military. Wet bridges are built across the rivers and large water bodies where these can float. For small water bodies such as canals and drain, dry bridges clear of the water surface are provided. However, these bridges have fixed specifications of span, launching slope and bank conditions. Therefore, a suitable site has to be selected to meet these requirements with some site preparations. Selection of Ferry Sites For crossing the canals and rivers, suitable ferry sites are needed till bridges are constructed over them. The terrain requirement is somewhat similar to bridges except that some form of road or track on the banks of the water bodies to provide access to the ferry site is required. Selection of Sites for Helipads During the movement of the troops and equipment, sufficient air cover essential in today抯 warfare, as these are easy targets from air by the enemy. Keeping the capabilities of a helicopter in mind, it is being increasingly used in combat role and other tasks like reconnaissance, evacuation of casualties etc. The dimensions of the helipad required for the landing of a helicopter varies from place to place but the ground conditions may nearly be the same as for bridge and ferry sites. For example, the location of a helipad depends upon the tree cover, soil conditions and slope of the ground. Identification of Tactically Important Roads In order to provide fast and safe movement of troops and equipment, identification of tactically important roads is essential. Roads and tracks that lead up to the likely bridge or ferry site are tactically important and need to be identified and suitably constructed so that these may be used as the axis of maintenance. Ideally these roads should not pass through any obstacles like the minefields. Preparation of Vehicle Mobility Maps Military vehicles are generally classified into two broad categories, tracked and wheeled. Vehicles like tanks have excellent cross country mobility due to presence of tracks over its wheels. However vehicles having wheels but without tracks do need careful route planning before cross-country movement can be attempted. Vehicles carrying essential war stores like ammunition; fuel and other supplies are all wheeled vehicles. The need for a knoowledge based approach The activities mentioned above are just a few undertaken by the defence forces while planning for a military operation. Most of these require good interpretation skills to understand the terrain. These skills may vary from person to person and hence the interpretation is also likely to vary. This may adversely affect the battle plan therefore, there is a need to standardize procedures and incorporate systems, which use the existing knowledge acquired by experts, intelligence agencies and other means. This knowledge base (KB) can be effectively used to make accurate decision making tools which can easily be used by military commanders at all levels. KB expert systems can be developed, which can take into account the experience and knowledge of terrain analysts and other experts to convert them into a set of rules, which can then be applied to digital data to derive a number of thematic maps that can in turn be used in war planning. A typical KB system comprises of a set of interrelated and interconnected components such as knowledge base, inference mechanism (IM), user-interface, mechanism to update KB, and the explanation of the rules applied (Nikolopoulos, 1997). The KB is a systematic collection of information from various sources and experts in the area of application (e.g., war planning here). It is organizes the information into rules, which are generally written in the form of IF-THEN-ELSE statements. The IM is the work center as it provides the deductions or solution to a particular problem based upon the rules framed. The user interface is the link between the user and the KB such that a non-expert can also use it comfortably. With passage of time, the KB has to be updated in terms of informations and rules, thus Mechanism to update KB is an essential facility to upgrade and check the validity of KB. Generally, a KB system shell is built that houses the IM, the user interface, an explanation system and a knowledge base editor. There are numerous commercial KB system shells, each one appropriate for a slightly different range of problems. Using shells to prepare a KB system generally reduces the cost and time of development. In this paper, the knowledge based classifier in the well known Image Processing and raster GIS software namely ERDAS Imagine has been used as a shell to develop a knowledge-based approach for the military operations mentioned above. Study area The KB presented here has been designed keeping in mind its effective use in the western borders of our country. In the western region, the general terrain conditions are plain with the soil type varying from desert sands of Rajasthan to the marshy areas of Gujarat. The landscape in this region is interspersed with rivers and canals. However, due to the security restrictions in use of topographical sheets of the border areas, an area having somewhat similar ground conditions has been selected here to test the knowledge-based approach developed. The area lies south of Saharanpur city, UP, between Latitude 29?5?to 29?0?and Longitude 77?0?to 77?5? Survey of India (SOI) map sheet 53 G/9 having a scale of 1:50,000 has been used. The area covered is approximately 8 Km by 8 Km. This area has one major river Hindan flowing from north to south and few canal systems as shown in Fig 1. Fig. 1 Topographical map of study area selected GIS Data Layers The rules to be formed are based upon the spatial information about the terrain as desired by a particular military operation. A number of spatial raster data layers are prepared. The data for the study area has primarily been collected from the topographical map as above. However, due to non-availability of certain information, some hypothetical data has also used for the preparation of layers. Following data layers have been prepared by on-screen digitizing the scanned topographic map in ERDAS Imagine, Water Bodies In the study area one major river, River Hindan, is flowing from north to south with a network of canals, to the north west of the area and some small lakes around villages. Thus, three categories of water bodies are considered as rivers, canals and lakes with their raster values assigned as 1, 2 and 3 respectively (Fig. 2). Fig. 2 Thematic layer of water bodies Road network Existing roads and tracks are an important aspect as it ensures the smooth movement of both fighting columns and logistical supplies. The area has a good network of roads and tracks both along the river and perpendicular to it. The roads and tracks are therefore the automatic choice for the categories in roads layer and are assigned a raster value of 1 and 2 respectively (Fig. 3). Fig. 3 Thematic layer of road network Power Lines Existence of power lines is an important factor while deciding the location of helipads. Hence, power lines have also been digitised and assigned a raster value as 1 and rest of the area as 0 where no power lines exist (Fig. 4). Fig. 4 Thematic layer of power lines Slope Map The area is in general flat with heights varying from 252 m to 267 m. Only one contour at 20 m interval passes in the vicinity of the area. Therefore, spot heights and benchmarks available on the topographical sheet have also been digitized to generate a Digital Elevation Model DEM. 3D surfacing tool of ERDAS Imagine has been used to generate a raster DEM from the digitized contour and the spot heights (Fig. 5). From this DEM, a slope map has been prepared showing four categories as, no slope (0% slope), plain (slopes less than 5 percent), moderate (slopes between 5 to 10 percent) and steep (slopes greater than 10 percent) (Fig. 6). Fig. 5 Raster DEM of study area Fig. 6 Thematic layer of slopes Land use land cover map IRS-LISS III data has been used for classification of various land use and land cover of the area. Five land use land cover categories namely built-up areas, forests, rivers, canals and cultivated areas have been selected and given raster values as 1, 2, 3, 4, and 5 respectively (Fig. 7). Fig. 7 Thematic layer of land use In addition to the above data layers, two more data layers have been prepared based upon the hypothetical data, Soil map Soil conditions play an important part in the process of site selection for various military tasks like bridging, helipad location etc. The factors like bearing capacity and the soil moisture are critical for operations like bridging. Approach to site and area near a bridge must be able to take on heavy vehicular traffic. Due to lack of authentic soil map of the area, a hypothetical soil data has been generated and is classified into three categories namely sand, silt and clay with their raster values as 1, 2 and 3 respectively (Fig. 8). Fig. 8 Thematic layer of soil types Water depth Wet Bridges are built using pontoons having decked girders, which float on water. Hence there is need for minimum water depth, which is generally kept as 1m. In absence of authentic data, hypothetical water depth data for the river in the study area has been generated and divided into two broad categories as adequate or inadequate with raster values assigned as 1 and 2 respectively (Fig. 9). Fig. 9 Thematic layer of water depth

247

积分

648

金钱

134

帖子

初级水师

179
发表于 2007-1-10 18:03:51 | 只看该作者

follow up

Generation of rules for the KB Knowledge acquired in the form of GIS data layers converted into rules that are transformed into a knowledge base using the Knowledge Engineer (KE) shell of ERDAS Imagine. Each data layer provides a parameter or condition, which can be used for the formation of rules to get the final hypothesis. Separate knowledge base has been prepared for each military operation selected in this paper. For brevity, the KB for the selection of wet bridging site has been described here. However, all the graphical representations of each KB are shown in Fig. 10 to Fig. 15. Fig. 10 KB for Selection of Wet Bridging Sites Fig. 11 Knowledge Base for Selection of Dry Bridging Sites Fig. 12 Knowledge Base for Selection of Ferry Sites Fig. 13 Knowledge Base for Selection of Helipad Sites Fig. 14 Knowledge Base for Identification of Tactically Important Roads Fig. 15 Knowledge Base for Preparation of Vehicle Mobility Maps For launching a wet bridge, the parameters that are likely to be considered are type of water body, ground slope, type of soil, land use and availability of adequate water depth. The KB for the selection of wet bridge site consists of the following rule written in the text form as: IF WATER BODY == RIVER (1) AND SLOPE < = PLAIN (5) AND SOIL TYPE > = SAND (1) AND LAND USE >= CULTIVATED AREA OR RIVER OR CANAL (3) AND WATER DEPTH == ADEQUATE (1) THEN SUITABLE SITE FOR WET BRIDGING The numbers in the bracket show the respective raster values. On executing this KB, the hypothesis gives the output class (colour coded as red) as the possible site locations for the wet bridge (Fig. 16). Similarly, once the KB for each military operation is executed, outputs are a set of thematic maps, which are shown in Fig. 17 to Fig. 20. These thematic maps have been visually analysed with the input images in relation to the rules applied. The broad areas as identified by each KB have been checked using topographical map and military data regarding parameters for the various military uses, and have been found to be correct. Thus, the KB approach can be effectively used for military operations. The thematic maps thus produced can be also used as overlays to carry out an accurate planning for various military tasks. Conclusions Accurate and timely terrain analysis is the key for today抯 fast paced mobile battlefield. Conventional techniques need to be updated due to availability of data products like maps in digital form and high-resolution satellite imagery. The knowledge base approach for the interpretation of terrain features will prove to be very useful for modern day war planning. This approach combines the experience and knowledge of experts and delivers this to the soldier in the battlefield. References ERDAS (1999), ERDAS Imagine Expert Classifier, ERDAS Inc, USA. Sensing Journal, Vol 5, pp 67-69. Nikolopoulos C. (1997), Expert Systems: Introduction to First and Second Generation and Hybrid Knowledge Based Systems, Marcel Dekker Inc, USA.

247

积分

648

金钱

134

帖子

初级水师

180
发表于 2007-1-10 19:02:00 | 只看该作者

GIS application for mountain terrains: some considerations and options

Introduction Mountains are areas of high relief having distinct changes in terrain slope and thus require a three-dimensional representation for spatial modeling. Maps and GIS in general treat the world as if it were flat (plain land); this two-dimensional view leads to incompatibility in appropriateness of GIS application between that for level land and mountains. Mountains have some very specific features that need heterogeneity. Unfortunately, it is not the practice, apart from few modifications made in GIS applications for mountain areas. The study illustrates integration of such factors in ecological zoning, land suitability classification and probability mapping, such as for land erosion. 'Agricultural suitability/capability' and 'Vulnerability to soil erosion' are two such examples. Maps represent geographical area on the planar surface whereas due to slope differences in the mountains the actual surface area is greater, the discrepancy in area calculation leads to overestimation of population density (biotic). Watershed, having modal average slope in 20-25o ranges, has geographical area of 94 km2 as against the actual surface area of 105 km2. A large surface with very steep slope (e.g. cliff face) is reduced to negligible area on a map. Similarly, linear calculations and buffering become erroneous for mountains using simple GIS techniques. Shorter distances than actual are recorded from maps; such errors could lead to underestimation in the cost of road construction when using GIS methods. Pronounced slope and shadow effect cause much problem in interpretation of remote sensing image data. In the mountain areas, research is still needed on how to use shadow information (total shadow minus topographically caused shadow) for land cover classification. Thus, GIS has an important role in improving digital image processing in mountain areas. Thermal differences due to aspect affects the limits of flora and fauna distribution. It is well known that the upper limit of any vegetation type is bound to be lower on the northerly aspects making them drier. Such factors were used in bio-climatic zoning in our study. The Slope aspect can be used to our advantage in conjunction with geological structure to assess the trend of rock beds, which may be useful for planning of roads and other constructions. This approach was adopted in the finding causes of landslide zoning, which is rather recent, is being focused in various parts but none have been quite comprehensive. Inversion of temperature is another phenomenon dictating the land use in mountains. Settlements refer ridge tops and slopes than valley bottoms, as they are colder at night and foggy for longer period of the day. Accessibility is not easily defined in the hills as in the plains and this is an important factor for land use and infrastructure. Spatial complexity of mountain regions makes extrapolation very difficult. The same locational theories of hierarchical distribution of settlements do not apply to these regions as in the plains. The complex interaction between various factors lead to this heterogeneity. Added to these are the irregularities of data and difficulties of data collection and fieldwork in these areas. So far there are two approaches developed towards modeling the three-dimensional complexity of the mountains, these are the 'DTM approach' and the 'Landscape approach'. The mountain specialists require a truly 3-GIS. However, incorporation of the approaches into knowledge based GIS is yet to be developed. Digital Terrain Models (DTM) helps in portraying the 3-dimensionsionality of the mountains, but overlaying procedures on DTM are yet not satisfactory. Better use of aerial photography is called for in this field. Global Positioning Systems (GPS) is used with GIS for mapping new (unmapped) features. With DTM, GPS and appropriate weightage attributed to slope, aspect and elevations in GIS it is possible to improvise the present inaccuracies of GIS applications for mountainous terrains. In recent years, the growing concern over the environmental degradation of mountain ecosystems ahs gradually placed mountain issues in environmental and political agenda (Heywood et al., 1994). An example of this growing interest was the formulation of a Mountain Agenda for the UN in 1992. Several organisations are developing regional and national scale monitoring programmes in which GIS plays a central role. Hence it is very important to assess the applicability, or degree of accuracy in such GIS applications. Heywood et al., (1994) underestimated the uniqueness of GIS application in mountain environment, stating "that there is nothing unique about the character of GIS applications in mountain areas" although they add "nevertheless, the use of GIS in mountains require some special considerations". The primary criterion that distinguishes mountains from other land surfaces is its significant positive relief. Slope, aspect, complexity and heterogeneity of climate, vegetation, faunal and land use distribution patterns are all outcome of this primary factor, relief. The paramount effect of relief is nowhere more spectacular than in the Himalayas, and this is where our study is based. The physical characteristic that best defines mountains is their three-dimensionality. It is this three-dimensionality that poses the greatest challenge for modelling these regions using GIS, for the simple reason that most GIS and the data they incorporate still treat the world as if it were flat. GIS applications started in the West and gradually, through government or semi government organisational aid and private enterprises, spread to the underdeveloped countries. In India, particularly in the mountain areas the use of GIS has been mainly organisational. Therefore the fields of GIS application here have been land use analysis, hazard assessment, natural resource management, visualisation of terrain, ecological and hydrological modelling etc. Most of the work has been application of conventional GIS methods without much thought to the effect of relief and probable errors. The sphericity of the earth has long been recognised and assigned a role in geography but the topological nature of the surface has not received as much attention (Coffey, 1998). This paper deals with the source of errors encountered in GIS application to mountain environment using examples from some case studies and references. The paper also goes further to evaluate some of the options for improvising GIS applications for mountain areas. Errors in GIS applications for mountain environment "Error and uncertainty are common features of cartographic information, so it is hardly surprising that these aspects are also present in digital version of analogue maps" (Openshaw et al. 1991). GIS is a powerful tool in spatial analysis and its power is obvious in that it has the potential to dramatically increase both the magnitude and importance of errors in spatial databases. Burrough (9186) identifies three main groups of factors that govern errors that may be associated with spatial data processing. These are: (a) obvious sources of error (human), (b) errors arising from natural variations or from ordinal measurements, and (c) errors arising through processing. The errors associated with GIS applications specific to mountain regions, our current topic of discussion, are from the second group. No map is entirely error free, but errors due to natural variations in mountainous terrain are significant. Positional error, aerial interpolation error and linear measurement error increases with slope. Error in area calculation Calculation of population density (e.g. bio-density) is exaggerated by underestimation of area for the sloping terrain. The actual surface area on a sloping terrain is greater than the geographical area depicted on the map that represents surface of the earth as a flat surface. The actual area is the product of the geographical area and Cosine of the average slope angle of the place. The smaller the unit size the greater the accuracy (Fig. 1). Fig. 1: Descrepancy between actual area and geographical area depending on slope of land Error in linear calculation: Similarly the linear distances over sloping land are greater in reality than depicted on the maps. The actual distance in this case can also be calculated by finding the product of the mapped distance and the Cosine of the average slope angle traversed. Thus distances derived from GIS give wrong information, such as shorter road distances and lower drainage density. As a result cost deduced for transmission line or road construction would be an underestimated value, even if the difference is not too large. Positional error: As a result of shorter distance derived from GIS for a mountainous terrain, the placement of points according to linear measurement becomes erroneous when applied on sloping terrain. For example, if sampling points are to be located 1 kilometre from a given point and their positions are worked out with GIS considering a two-dimensional surface, the resultant position would be further away than a kilometre due to slope involved. For that matter how would the measurement of point patterns be carried out using nearest-neighbour analysis or quadrant sampling for mountain areas? Such questions become more relevant as detailed GIS analyses are more frequently being carried out on larger scale maps. Buffer zone error: Since linear distances are underestimated a buffer zone generated by GIS that ignores the land slope would enclose a wider area than actually intended. The proportion of additional distance brought into the buffer zone would be directly proportional to the slope angle of the land. Ineffectiveness of straight-line accessibility derivation: In plain land is derived simply by multiple buffer generation from the road (line) for an area and from a settlement centre (point) for evaluating accessibility of a village to different service centres. This simple method does not hold true for mountain regions, where slope and other physical impediments must be taken into account when working in scales larger than 1:50,000. Some accessibility maps have been made taking the contours into consideration (Bournay & Pradhan, 1994; Trapp, 1995) but existence of un-traversable slopes do not seem to have been considered. Accessibility passages only come below 40o slopes for foot-tracks and within 10o for motorable roads. Therefore the algorithm for accessibility mapping in mountain areas needs to be far more intelligent. Veregin (1995) very well defines the types and sources of error. "Errors result from inadequate data acquisition methods that do not truthfully capture the real world phenomena. This conceptualization has much in common with statistical treatment of error in terms of bias and precision?That is, encoded values represent approximations?Errors can therefore be reduced through the use of more refined data acquisition techniques 卆nd methods of repeated sampling." Apart from this is inherent variability of geographical phenomena. Veregin states that in case thematic attributes, methods for measuring and documenting error can be differentiated in terms of the scale of measurement as approximate, whereas, for interval and ratio data, error can be measured in terms of the mean deviation between actual and observed values at a sample of locations. This provides an error index analogues to the root mean squared error (RMSE) for elevation data. Effect of Slope factor Although for most purposes, the earth may be regarded as a uniform surface, it does have variability in its relief.. Similarly, any conceptual surface may be examined in terms of its degree of relief. Relief is commonly expressed by of gradient, which identifies the change in the vertical dimension as the horizontal dimension changes (Coffey, 1981). The difference in area calculation does not affect land use since land revenue measurements only consider horizontal land surface, and for all practical uses (construction of house, of tanks, agriculture) a quasi horizontal land is put to use. Vertical component of the land is not utilized. However, for forest cover the actual area perimeter and land surface is kept in record that does not match (is greater than) the geographical area depicted on the map. Therefore when a forestis delineated in GIS its area is underestimated. The problem becomes acute in the case of cliffes or very steeply sloping land that may be the hanitat of particular plant species. In our study area, while analysing the land use changes, it was observed that the new agricultural extensions during 1963 and 1993 were predominantly (26.5%) on the 20o - 30o average slope areas since the lower slopes were already under cultivation and higher slopes are not preferable. Effect of topographic aspect South facing aspects in the northern hemisphere are sunnier (receiving longer period of solar radiation), and therefore warmer and drier. As a result the upper limits of occurrence of any fauna or flora are higher on the southern aspects than the northern aspects. Even the snow-line is lower on the northern aspects and the snowmelt regime too is different. The southern aspects being sunnier and warmer have less forest cover and are preferred for agricultural purpose, whereas northern aspects are more forest clad. Southern aspects are more prone to forest fires too. Such is the impact of aspect on the local moisture regime. Therefore, aspect must be considered along with edaphic, macro-climatic and infrastructural factors in land use planning for such areas. In our study area the agro-climatic regions were defined taking into consideration both elevation and aspect, and based on that the land suitability classification was carried out. Agricultural extension during 1963 to 1993 were mainly (28%) on the south-western slopes and eastern slopes of the watershed, and marginal on the northerly slopes. There was less extension on the south facing slopes due to non-availability of land. In soil fertility evaluation study slope and aspect derived from DTM have provided two of the extrapolation factors in soil carbon and nitrogen contents (Schmidt, 1991) mapping. The same geological structure has different facet according to the aspect. A north-east dipping rock strata has dip slope on the northeast aspect and anti-dip slope on the south-west aspect. This fact has significant implication on slope-cut road construction. Consequently the anti-dip slope with inward sloping rock beds provides a safer side for road construction as dip slopes would be prone to slope failure. In the Himalayas, where due to thrusting the general orientation of the rock strata is more or less uniclinal, this method is applicable. This rule was applied in our study in combination with lithology and structure, in the Garhwal Himalayas for (i) finding the major causes of landslides; and (ii) for assessment of the appropriateness of the proposed road route in a watershed. In the former study it was found that lithology and construction aggravate landslides more than the dip direction of the slopes. Whereas in the latter study where the general dip is 30o E of N at 45o to 60o slopes, and the proposed road is mostly planned on the right (west) bank of the river traversing unsafe dip slopes where slope-cut for road construction will result in rock slip and landslides. Only 20% of the proposed route lies on comparatively safe slopes (with rocks dipping away from the road cut) for road construction. Moreover the route runs across a major active landslide. Re-routing of the road on the anti-dip slopes as much as feasible and using dip slopes only where the slope is below 25o is recommended. Heterogeneity of mountain landscape: Mountain ecosystems are very heterogenous in the spatial distribution of any feature, therefore interpolation, or extrapolation of data leads to largely erroneous results. Extrapolation can be very risky without in depth understanding of the inter-relationships of the variables involved in the extrapolation, and the risks of inaccurate or improbable extrapolation increase with the number of variables and the complexity of the environment. The data ffor almost all aspects of mountain ecosystems are very heterogeneous in their length and frequency of record, spatial coverage and availability. The three-dimensional complexity of the mountain can exacerbate these problems to an extreme extent (Heywood, et al., 1994). Data sources and related problems: The main data sources for mountain regions are similar to that of the lowlands but due to its inherent heterogeneity higher resolution of remotely sensed data and greater sampling density for ground truthing is necessary. One new and reliable source of digital locational data is Global Positioning System (GPS) which is particularly helpful in representing break-line features characteristic of mountain areas. However, locking-on at least 4 satellites even in mountainous terrain is often problematic when working in confined areas, such as gorges (stocks and Heywood, 1994) so GPS may not prove to be effective in certain areas. There are some inherent problems related to mapping from remote sensing and aerial photographs. Geometric distortion arises when either an aerial photo or satellite imagery is used to record a mountainous region. The displacement between observed and true map locations of ground feature has been estimated as + 9 pixels, i.e.270m for 30m resolution (Hill & Kohl, 1988). Fukushima (1988) cites root mean square (RMS) errors of 101.6 m in mountain areas, compared to errors of 3.4 m in areas of low relief using SPOT data. DTM have been used to assist in the correction of data in such cases (Haefner & Hugentobler, 1988). One of the methods of error rectification in satellite images is shadow matching. Data models for mountain environment: The proliferation of GIS is explained by its unique ability to assimilate data from widely divergent sources, to analyze trends over time, and to spatially evaluate potential environmental impact caused by development (ICIMOD, 1995). Therefore, GIS should be capable of assimilating the unique factors controlling the land use pattern in mountains. To develop an understanding and appreciation of the optimal locations for settlements and other land uses, it is also essential that the GIS should be able to identify areas affected by the likelihood of natural hazards, whose distribution is influenced by complex interactions between local climates, human activities, soil, bedrock and vegetation characteristics (Hewitt, 1992). A widely researched GIS application in mountain environments is in landslide hazard zoning (Rengers et al., 1992) van Westan, 1992, 1993, 1994) where either qualitative or quantitative analysis is performed. The analyses have taken various factors of mass movement like geological structure, lithology, hydrological conditions, vegetation, angle of slope and aspect of slope into account. A deterministic model of landslide hazard using GIS has become rather popular. To capture the three-dimensionality complexity of the mountain areas two broad groups of approaches have developed in GIS, one is the DTM approach and the other is the landscape approach. The first involves the use of digital terrain models to provide categorization of zones of elements of a mountain area according to slope, elevation and aspect. The latter uses landscape units, constructed from a systhesis of environmental data, which reflect the character (structure, sustainability and responsiveness) of an area rather than its physical form (height, shape and exposure) alone (Heywood et al 1994) . The DTM approach: Digital Terrain Models (DTMs) are mathematical models to graphically represent the elevation of the terrain derived from elevation data (z values at x,y). Information on intermediate height, aspect, slope, shape, radiation incidence, hill shadows, visibility and cut-and-fill estimates can be derived from these models. Data for DTM comes from the following sources viz., ground surveys, topographic maps, satellite imageries, aerial photographs and GPS. There are two main structuring approaches in DTM; (a) grid-based and (b) triangular irregular network (TIN) method. The former is less computationally intensive than the TIN method. First developed by Peuker (1978), the TIN method is better capable of working on randomly located height data, incorporating break lines, and reduces the data volume. The use of DTMs to help in modeling dynamic mountain ecosystems (Walsh et al., 1994) involve probability mapping for pedictable natural hazards using multi-criteria analysis. Weight is attributed to various factors, some of which like slope angle and aspect are derived from DTM. In satellite images of mountains, land cover should be derived from total shadow comprises minus the topographic shadow (Paracchini & Folving, 1994) and the integration of DTM with GIS will help in developing accurate semi-automatic surface cover mapping from satellite imagery. The landscape approach: The landscape approach incorporates behavioral approach of the landscape is based on the principles of landscape ecology (Forman & Gordon, 1986). Permanent and dynamic conditions of the land are differentiated. The method of delineating landscape units requires prior knowledge and use of Knowledge-based systems. One basic problem associated with this approach is that of assessment of stability. Stability is generated by the overlay of landscape units and is not easily interpreted by non-experts in the field. This is posing problems in using this approach in policy making. Fig. 3: Erosion impact of proposed motor road in Pranmeti watershed Conclusions Even if total representation of all the complexities of mountain area is not possible, the major and relevant elements characterising the terrain such as slope, aspect,elevation, macroclimate and actual accessibility should be taken into consideration in GIS applications for mountain areas if realistic results are desired. The importance of field data and ground thruthing should not be underplayed while using advanced techniques like remote sensing or GPS. The user must not be complecent with a two-dimensional GIS when dealing with mountain areas. The active use of DTM, with overlay and other spatial analyses being carried out on the three-dimensional model is strongly suggested, and appropriate weightings should be given to different topography-related factors for the mountain regions. Ideally the mountain scientists require a 'truly 3D GIS' (Stocks & Heywood, 1994), and possibly ERDAS Imagine is a step in this direction. Understanding the role and inter-relationship of various factors in ecological setup and land use is essential for spatial analysis. The TIN DTM using statistical techniques (spatial moving averages, kriging and other interpolation methods) is more advisable for mountain areas unless a very high-resolution grid DTM is used (which creates heavy data files). Draping and 'cut and fill' methods should be correct and visually satisfactory. The landscape approach is more advisable in agro-economic studies otherwise the DTM approach is preferred fore spatial analysis of mountain regions. Finally greater resolution and accuracy of data is required in mountain regions due to their spatial complexity.
您需要登录后才可以回帖 登录 | 注册   扫一扫,用微信登录

本版积分规则

联系管理员|手机版|小黑屋|水世界-水处理技术社区(论坛) ( 京ICP备12048982号-4

GMT+8, 2025-5-2 05:45 , Processed in 0.177667 second(s), 56 queries .

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表