水世界-水处理技术社区(论坛)

 找回密码
 注册

QQ登录

只需一步,快速开始

用微信登录

扫一扫,用微信登录

搜索
楼主: 膜法师hong
打印 上一主题 下一主题

【汇总贴】变频相关资料大集合(申请加精!!!)

[复制链接]

31万

积分

2万

金钱

4万

帖子

超脱水师

己身不正 何以正人

2012年度“十大风云人物”勋章竞拍勋章财富勋章十大风云人物2011年度十大风云人物勋章季度优秀版主勋章2013年“十大风云人物”勋章2015守护天使

QQ
61
发表于 2009-3-28 13:04:24 | 只看该作者



三、PWM调制策略的若干技术   早期的PWM调制方法基本上是通过硬件电路模拟产生,主要以正弦波脉宽调制为主,后来发展到模拟和数字电路混和控制,当前的调制技术基本上是通过软件算法直接实现的。软件实现有着非常明显的优势:程序编写灵活,修改方便,在相同的硬件条件下可以实现多种调制策略,同时维护方便,抗扰性强。从最初追求电压波形的正弦,到电流波形的正弦,再到磁通的正弦;从效率最优,转矩脉动最少,再到消除噪音等,PWM控制技术的发展经历了一个不断创新和不断完善的过程。PWM控制技术从控制思想上分,可分为四类,即等宽PWM法、正弦波PWM法(SPWM)、磁链追踪型PWM法和电流跟踪型PWM法。近几年新近提出的不连续的SVPWM方法和随机PWM方法在这里作为重点加以介绍。   1. SPWM法   SPWM法从电动机供电电源的角度出发,着眼于如何产生一个可调频调压的三相对称正弦波电源。具体方法是以一个正弦波作为基准波(称为调制波),用一列等幅的三角波(称为载波)与基准正弦波相交,由它们的交点确定逆变器的开关模式。为了提高逆变器的输出电压幅值,针对SPWM法,人们提出了准优化PWM法,即三次谐波叠加法。在正弦波中注入一定比例的三次谐波后,调制波的幅值大大降低,在调制波没有过调制的情况下,可使基波幅值超过三角波幅值,实现调制系数大于1的调制。在这种调制方式下,最大调制比可提高到1.15左右,相应直流母线电压的利用率最大可提高15%。   2. SVPWM法   磁链追踪型PWM法又称为电压空间矢量脉宽调制(SVPWM),与SPWM法不同,它是从电动机的角度出发的,着眼点在于如何使电动机获得圆磁场。它以三相对称正弦波电压供电时交流电动机的理想磁链因为基准,用逆变器不同开关模式所产生的实际磁链矢量来追踪基准磁链圆,由追踪的结果决定出逆变器的开关模式,形成PWM波。逆变器的开关模式有8个空间电压矢量,其中V0、V7为零电压矢量。SVPWM不仅使得电机转矩脉动降低,电流波形畸变减小,而且与SPWM技术相比直流母线电压利用率有很大提高,在这种调制模式下直流母线电压的利用率最大可提高15%,并易于数字实现。 3. 不连续的SVPWM策略(DHPWM)   不连续的SVPWM方法是近几年提出的一种新颖的电压空间矢量脉宽调制策略,国外文献称为不连续的SVPWM策略(DHPWM),国内有些文章称为混和型调制策略(HPWM)或低开关损耗模式调制。对于连续PWM调制方法,三相调制波都位于其对应载波的峰值之间,因此,所有的连续PWM调制方法,其逆变器的开关损耗都是相同的,且与负载电流的相角无关。降低开关损耗最简单的方法就是使开关器件不动作,或者在一个周期中尽量少动作。传统的SVPWM方法中零矢量(V0和V7)的位置在脉宽生成中是对称存在的,零矢量的导通时间相等,而且位置是固定的,不能改变。如果保持有效导通矢量的时间不变,这样合成的空间电压矢量有效值不会受到影响,同时改变零矢量V0和V7在脉宽分配中的位置,使开关动作的次数减少,这就是不连续的SVPWM方法。   零矢量的分配和位置不同就会有不同的调制效果。如果在三个相邻矢量所夹扇区固定选用一个适当的零矢量,可使每一组在一个周期内有120°的扇区内不开关。每相不开关范围是连续的120°的区域,因而导致上下桥臂的开关损耗不一致,波形畸变比SVPWM要大很多。如果在相邻的60°区间选用不同的零矢量,这样有三种零矢量的分配方案。实际应用中应该尽量使每相开关器件在负载电流较小的区间内开关,安排大的负载电流在不开关的扇区内,这样不仅可以减少开关次数,同时还可以有效降低开关器件的最大开关电流,从而使开关损耗最小。该方法可以将开关次数减少到原来SVPWM的1/3,极大的降低了开关损耗,同时由于插入零矢量的位置改变了逆变器的续流过程,对抑制电流波形的振荡和失真也有一定的效果。在工程中对该方法调制时的死区效应补偿技术的实现存在一定的困难,一种行之有效的方法是在每个扇区内对有效导通主矢量的补偿。   4. 随机脉宽调制技术(RPWM)   在变频器供电的交流传动系统中,噪声问题长期以来一直受到人们的关注,在某些低噪声的场所变频器和电机所发出的噪声令人难以忍受。变频器噪声主要由逆变器所采用的脉宽调制方法所致。在一般的PWM方法中,逆变器的功率开关是以“确定的”方式通断的,这种控制方式虽然可以很好地抑制电压波形中的低次谐波,但却将产生某些幅值很大的高次谐波,这些谐波主要集中在一倍和两倍的载波频率附近,它们将产生明显的噪声和振动。近年来出现的随机脉宽调制(RPWM) 为解决逆变器的噪声问题提供了一种全新的思路。随机PWM的基本思想是用一种随机的开关策略代替常规PWM中固定的开关模式,以使逆变器输出电压的谐波频谱均匀地分布在一个较宽的频率范围内,达到抑制噪声和机械振动的目的。   目前有三种可行的RPWM方案:   (1) 随机化开关频率   即在传统的SPWM中,使三角载波的斜率随机变化,那么每周的开关次数可随机变化,从而达到开关频率随机的目的。   (2) 随机化脉冲位置   在这种方案中,随机量是开关信号脉冲在每个通断周期内的位置。最简单的是只有两位随机选择,一种在开始,一种在结束。 来源:输配电设备网   (3) 随机开关   随机波与正弦参考信号相比,比较的结果形成了数字RPWM信号。   在现有的空间矢量脉宽调制技术的基础上可以采用随机化脉冲位置的方法实现随机PWM。   在上面优化的SVPWM中分析了零矢量位置的不同,会降低系统的开关损耗,如果采用随机的方法将这些优化的SVPWM随机调制,在每一个载波周期出现各种零矢量插入的位置不同,就会随机改变脉冲位置,实现随机PWM调制的目的。目前比较简单和实用的方法只用2个零矢量固定的方式随机切换,由一个随机函数产生一个随机的两种状态0和1,如果为0,将零矢量V0作用在开关周期的两头;如果为1,将零矢量V7作用在开关周期的中间。该方法实质上是两种低开关损耗调制的随机切换。   随机函数产生的状态随机性越好,切换的调制状态越多,系统的谐波能量就能更好的连续的分布,随机PWM的效果就会越好。但是同时算法实现的难度和对控制器的实时性要求也会提高。采用RPWM方法,可以有效的降低逆变器系统的噪声,同时将某些集中的离散的高频成分转化为连续的平均分布的频率成分,降低了向外传播的电磁干扰。 5. 过调制技术   过调制技术主要是在空间矢量脉宽调制(SVPWM)基础上来实现的一种技术。对高性能交流传动系统来说,如何充分利用直流电压,以获得最大输出电磁转矩是一个很重要的因素。尤其是在弱磁阶段时,为了获得足够的电压,有必要控制逆变器工作在过调制范围。传统的SPWM控制时逆变器输出电压只能达到方波工况的78.54%,而空间矢量脉宽调制(SVPWM)能够将输出电压提高到方波工况时的90.69%,为了获得更大的输出电压,逆变器必须工作在过调制区,直至达到方波工况。   目前学术界提出的空间电压矢量过调制方法有许多种,其算法的复杂程度和效果都各不相同。但是输出电压矢量调制方法实质上一般只有两种过调制方法:双模式控制,将过调制区间分为两个部分分别调制;单模式控制,即是将过调制区间作为一个整体控制。实质上单模式只是双模式的一种工程简化,因而实现简单,但是产生的基波电压相比双调制要低一些,谐波含量高。如果控制器的运算速度和存储空间足够,可以采用双模式控制,提高系统的输出特性。角度和调制比的关系可以离线获得存储在RAM中,或者在线采用拟合曲线进行计算得到。   四、结束语   本文讨论了控制策略和调制策略在改善变频器性能方面的若干技术和方法。这些方法可以在一个通用的硬件平台上全部由软件实现,有利于模块化和集成化。文中针对其中的一些技术问题进行了介绍和讨论,提出了一些相应的解决思路和方法,供大家探讨。
各位亲们,陶氏反渗透膜及东丽反渗透膜,长期可以提供比市场价更优惠更实惠的价格。
清啦

31万

积分

2万

金钱

4万

帖子

超脱水师

己身不正 何以正人

2012年度“十大风云人物”勋章竞拍勋章财富勋章十大风云人物2011年度十大风云人物勋章季度优秀版主勋章2013年“十大风云人物”勋章2015守护天使

QQ
62
发表于 2009-3-28 13:06:16 | 只看该作者

变频器维修经验谈

我们在维修大量变频器之后,发现很多人在变频器使用过程中存在不少问题,在这里与大家一起探讨. A、 变频器品牌的选定: 不要只看价格,有的变频器价格低,但质量、性能极差。其偷工减料,寿命短,配件少,难维修,如果换整个新的电路板则维修费会是天价。有的公司能承诺保修服务,但你的变频器可能要运到千里以外的城市,花一两个月的时间才能修好。有的变频器虽是名牌,但很娇气,要有好的使用环境才有好的质量。有的变频器装配的元件比较“独家专用”,难以买到而且价格高,这样维修费也高。性能差的变频器的另一个问题是一旦烧毁则相当严重,几乎没有维修价值,变频器的故障率相对较高,所以选购时要了解其维修是否方便,如你的附近是否有维修服务中心,变频器模块是否通用,是否容易买到。如果某个变频器用量大,则最好买多一两台作备用。如果你的变频器是用在简单的调速控制,请选用价格相对便宜的经济型系列。如果电机负载比较重、经常急停,请选用容量大一级或性能好的变频器。 B、 变频器不要装在有震动的设备上(如注塑机、冲床、洗衣机)。因为这样变频器里面的主回路联接螺丝容易松动,有不少变频器就因为这原因而损坏。 C、 接线问题:变频器输入端最好接上一个空气开关,保护电流不能太大,以防止变频器发生短路时烧毁不会太严重。一定不能把“N”端接地,特别是老电工最容易中招。控制线尽量不要太长,因为这样使控制板容易受电磁波干扰而产生误动作,也会导致控制板损坏,超过2米长的最好用屏蔽线。变频器旁边不要装有大电流而且经常动作的接触器,因为它对变频器的干扰非常大,经常使变频器误动作(显示各种故障)。有的人贪图方便,总是接通起动控制线,变频器一送电就起动电机,这样变频器由于流经充电电阻的电流太大而容易烧坏充电电阻。地线应接地良好,不然电机漏电严重时,地线带电也会损坏变频器。 D、 经常要急停的变频器最好加刹车电阻或采用机械刹车,否则变频器经常受电机反电势冲击,故障率会大大提高。 E、 变频器如果经常低速运行(小于15HZ),则电机要另加散热风扇。 F、 灰尘与潮湿是变频器最致命的杀手。特别是当停机几天后,粘在电路板上的尘埃返潮,这时送电后变频器电路板就最容易打火而损坏,最好能将变频器安装在空调房里,或装在有虑尘网的电柜里。要定时清扫电路板及散热器上的尘埃;停机一段时间的变频器在通电前最好用电吹风吹一下电路板。 G、 某些品牌变频器当散热风扇坏了后,它都不会发出过热保护,直到变频器损坏,所以当风扇有响声就应该更换。 H、 有的工厂供电是发电机发电,电压不稳定,变频器经常损坏,发电机加装稳压或过压保护装置后效果好 J、 防雷也很重要。虽然很少发生,但当变频器被雷光顾,将损坏惨重。恒压供水的变频器最容易被雷击,因为它有一条伸向天空的引雷水管。 K、 变频器的干扰也令人头痛,它会使其它电子设备无法正常使用,这时变频器输入、输出、控制线最好用屏蔽线,屏蔽层接线方法不能错。否则作用相反,有可能的再用铁管套住,加装滤波器,调低载波频率。如果变频器的开关电源的开关管是场效应管(如K系列)则其干扰会大些。 L、 当变频器坏了以后,最好不要交给没有维修经验的人修理,否则可能越修越坏。有时快熔断了,一定要检查模块是否有问题,有的电工没有经验,马上装上一个好的快熔(绝对不能用铜线代替),结果是变频器烧毁,按我们的经验,如果快熔断则模块大多有问题,但模块坏快熔不一定断。很多变频器功率模块、整流模块是可互相替换的,如果一定要买原型号的,有可能买一到或价格高。 M、 我们在维修变频器过程中,经常碰到有些工厂自己维修后又炸掉的变频器,而且损坏比原来更严重,更难维修。经检查,原来他们用的维修过的模块。维修过的模块用仪表很难检测出来,各参数完全正,但由于其内部接线粗糙,晶体管的密封硅脂打开后没法封好。这样的模块有的能用几个月,有的一开机就炸毁。维修过的模块由于是打开后回又装回,所以仔细辨认还是可看出,其用502胶水粘住铜片,摸上去比较硬。而且原装模块的胶比较光滑、柔软。维修过的模块由于要清掉里面的硅脂,使模块变成空心,这时敲打其铜片发出的声音是不同的,也可把损坏的模块拆开,看看接线是否粗糙。有的假模块是另贴标签的,从这个型号变成另一个型号,把电流小的贴成电流大的,甚至把耐压低的贴成耐压高的。现在标签印刷技术越来越仿真,但只要与原装的模块仔细对比一下还是可看出的。
各位亲们,陶氏反渗透膜及东丽反渗透膜,长期可以提供比市场价更优惠更实惠的价格。

31万

积分

2万

金钱

4万

帖子

超脱水师

己身不正 何以正人

2012年度“十大风云人物”勋章竞拍勋章财富勋章十大风云人物2011年度十大风云人物勋章季度优秀版主勋章2013年“十大风云人物”勋章2015守护天使

QQ
63
发表于 2009-3-28 13:09:29 | 只看该作者

富士变频器常见故障判断

 (1) OC报警 键盘面板LCD显示:加、减、恒速时过电流。 对于短时间大电流的OC报警,一般情况下是驱动板的电流检测回路出了问题,模块也可能已受到冲击(损坏),有可能复位后继续出现故障。若出现“1、OC 2” 报警且不能复位或一上电就显示“ OC 3” 报警,则可能是主板出了问题 ;若一按RUN键就显示“OC 3” 报警,则是驱动板坏了。   (2) OLU报警 键盘面板LCD显示:变频器过负载。 当G/P9系列变频器出现此报警时可通过以下方法解决:用卡表测量变频器的输出是否真正过大;用示波器观察主板左上角检测点的输出来判断主板是否已经损坏。   (3) OU1报警 键盘面板LCD显示:加速时过电压。 当通用变频器出现“OU”报警时,首先应考虑电缆直流中间环节的电解电容是否损坏,同时针对大惯量负载可以考虑做一下电机的在线自整定。另外在启动时用万用表测量一下中间直流环节电压,若测量仪表显示电压与操作面板LCD显示电压不同,则主板的检测电路有故障,需更换主板。 (4) LU报警 键盘面板LCD显示:欠电压。 如果设备LU欠电压报警且不能复位,则是(电源)驱动板出了问题。   (5) EF报警 键盘面板LCD显示:对地短路故障。 G/P9系列变频器出现此报警时可能是主板出现了故障。   (6) Er1报警 键盘面板LCD显示:存贮器异常。 大部分情况是内部码已丢失,只能换主板了。   (7) Er7报警 键盘面板LCD显示:自整定不良。 G/P11系列变频器出现此故障报警时,可能是驱动板出了问题。   (8) Er2报警 键盘面板LCD显示:面板通信异常。 11kW以上的变频器当24V风扇电源短路时会出现此报警(主板问题)。对于E9系列机器,一般是显示面板的DTG元件损坏,该元件损坏时会连带造成主板损坏,表现为更换显示面板后上电运行时立即OC报警。而对于G/P9机器一上电就显示“ER 2” 报警,则是驱动板失效了。   (9) OH1过热报警 键盘面板LCD显示:散热片过热。 OH1和OH3实质为同一信号,是CPU随机检测的,OH1(检测底板部位)与OH3(检测主板部位)模拟信号串联在一起后再送给CPU,而CPU随机报其中任一故障。
各位亲们,陶氏反渗透膜及东丽反渗透膜,长期可以提供比市场价更优惠更实惠的价格。

31万

积分

2万

金钱

4万

帖子

超脱水师

己身不正 何以正人

2012年度“十大风云人物”勋章竞拍勋章财富勋章十大风云人物2011年度十大风云人物勋章季度优秀版主勋章2013年“十大风云人物”勋章2015守护天使

QQ
64
发表于 2009-3-28 13:10:44 | 只看该作者

变频器的保护及处理方法

1、 过电流保护功能     变频器中,过电流保护的对象主要指带有突变性质的、电流的峰值超过了变频器的容许值的情形.     由于逆变器件的过载能力较差,所以变频器的过电流保护是至关重要的一环,迄今为止,已发展得十分完善.     (1) 过电流的原因     1、工作中过电流 即拖动系统在工作过程中出现过电流.其原因大致来自以下几方面:     ① 电动机遇到冲击负载,或传动机构出现“卡住”现象,引起电动机电流的突然增加.     ② 变频器的输出侧短路,如输出端到电动机之间的连接线发生相互短路,或电动机内部发生短路等.     ③ 变频器自身工作的不正常,如逆变桥中同一桥臂的两个逆变器件在不断交替的工作过程中出现异常。例如由于环境温度过高,或逆变器件本身老化等原因,使逆变器件的参数发生变化,导致在交替过程中,一个器件已经导通、而另一个器件却还未来得及关断,引起同一个桥臂的上、下两个器件的“直通”,使直流电压的正、负极间处于短路状态。 2、升速时过电流 当负载的惯性较大,而升速时间又设定得太短时,意味着在升速过程中,变频器的工作效率上升太快,电动机的同步转速迅速上升,而电动机转子的转速因负载惯性较大而跟不上去,结果是升速电流太大。 3、降速中的过电流 当负载的惯性较大,而降速时间设定得太短时,也会引起过电流。因为,降速时间太短,同步转速迅速下降,而电动机转子因负载的惯性大,仍维持较高的转速,这时同样可以是转子绕组切割磁力线的速度太大而产生过电流。      (2)处理方法     1、 起动时一升速就跳闸,这是过电流十分严重的现象,主要检查     ① 工作机械有没有卡住     ② 负载侧有没有短路,用兆欧表检查对地有没有短路     ③ 变频器功率模块有没有损坏     ④ 电动机的起动转矩过小,拖动系统转不起来     2、 起动时不马上跳闸,而在运行过程中跳闸,主要检查     ① 升速时间设定太短,加长加速时间     ② 减速时间设定太短,加长减速时间     ③ 转矩补偿(U/F比)设定太大,引起低频时空载电流过大     ④ 电子热继电器整定不当,动作电流设定得太小,引起变频器误动作
各位亲们,陶氏反渗透膜及东丽反渗透膜,长期可以提供比市场价更优惠更实惠的价格。

31万

积分

2万

金钱

4万

帖子

超脱水师

己身不正 何以正人

2012年度“十大风云人物”勋章竞拍勋章财富勋章十大风云人物2011年度十大风云人物勋章季度优秀版主勋章2013年“十大风云人物”勋章2015守护天使

QQ
65
发表于 2009-3-28 13:12:04 | 只看该作者

高压变频器的冷却方式




高压变频调速系统虽然是一种非常高效的调速装置,但是在运行中,仍然有2%-4%左右的损耗,这些损耗都变成热量,最终耗散在大气中。如何把这些热量顺利的从变频器中带出来,是变频器设计中一个非常重要的问题。 高压变频器的发热部件主要是两部分:一是整流变压器,二是功率元件。功率元件的散热方式是关键。现代变频器一般采用空气冷却或者水冷。在功率较小时,采用空气冷却就能够满足要求。在功率较大时,则需要在散热器中通水,利用水流带走热量,因为散热器一般都有不同的电位,所以必须采用绝缘强度较好的水,一般采用纯净水,它比普通蒸馏水的离子含量还要低。在水路的循环系统中,一般还要加离子树脂交换器,因为散热器上的金属离子会不断的溶解到水中,这些离子需要被吸附清除。 应该说,从散热的角度来说,水冷是非常理想的。但是,水循环系统工艺要求高,安装复杂,维护工作量大,而且一旦漏水,会带来安全隐患。所以,能够用空气冷却解决问题的场合,就不要采用水冷。 空气冷却能够解决的散热功率,毕竟有一个极限,这个极限与技术类别有关。比如,ABB公司的ACS1000系列三电平变频器,规定在2000KW以上就必须采用水冷,而美国的罗宾康公司和AB公司,对于3200KW/6KV的变频器,仍然采用空气冷却。这又是为什么呢? 原来,空气冷却能够从设备中带出来的热量,与有效散热面积的大小有关系,散热面积越大,能够带走的热量就越多。元器件的数目越多,散热的面积就越大,空气冷却的效果就越好。对于6KV的变频器,比3KV的变频器器件数目多,而且单只器件的电流小,所以可以有较大的散热面积,相当于热量均分了。 有人会说,我增大散热器的面积,不就增大了散热面积了吗?我公司产品开发部的试验证明了这是一个悖论。电力电子元件的热量按照如下方式传导:沿散热器表面散开,再沿表面传递到散热片上,被空气带走。沿散热器表面散开的面积是非常有限的,离开元件较远处,已经基本感受不到热量,所以把散热器表面做大到一定程度,对散热效果的增加已经没有意义。对于散热器的齿片也是一样,齿根处温度较高,齿尖处只有很少的热量到达,所以增高齿片到一定程度,对散热也毫无用处。 所以,要解决大功率产品的空气冷却问题,唯一有效的办法是,利用很多的元器件,均摊热量,增大有效的散热面积。 当然,采用功耗较小的新一代元器件,或者采用热阻较小的新式散热器,也可以使空气冷却的变频器功率更大,例如,在目前的IGBT封装形式下,原来我们发现,如果不采用器件并联,我们只能做到1800KW/6KV,现在,由于新一代IGBT器件和新式散热器的采用,我们可以做到2300KW/6KV。这是技术研究的另一方面,与上面的分析不矛盾。
各位亲们,陶氏反渗透膜及东丽反渗透膜,长期可以提供比市场价更优惠更实惠的价格。

31万

积分

2万

金钱

4万

帖子

超脱水师

己身不正 何以正人

2012年度“十大风云人物”勋章竞拍勋章财富勋章十大风云人物2011年度十大风云人物勋章季度优秀版主勋章2013年“十大风云人物”勋章2015守护天使

QQ
66
发表于 2009-3-28 13:12:52 | 只看该作者

变频器中重要参数的设定

1 概述 目前,变频交流调速已遍布冶金、电力、铁路、运输、化工、民用等各个领域。在晋城煤业集团使用的采煤机中,也应用了变频器。 2 几个重要参数的设定 2.1 V/f类型的选择 V/f类型的选择包括最高频率、基本频率和转矩类型等。最高频率是变频器-电动机系统可以运行的最高频率。由于变频器自身的最高频率可能较高,当电动机容许的最高频率低于变频器的最高频率时,应按电动机及其负载的要求进行设定。基本频率是变频器对电动机进行恒功率控制和恒转矩控制的分界线,应按电动机的额定电定电压设定。转矩类型指的是负载是恒转矩负载还是变转矩负载。用户根据变频器使用说明书中的V/f类型图和负载的特点,选择其中的一种类型。我们根据电机的实际情况和实际要求,最高频率设定为83.4Hz,基本频率设定为工频50Hz。负载类型:50Hz以下为恒转矩负载,50~83.4Hz为恒功率负载。 2.2 如何调整启动转矩 调整启动转矩是为了改善变频器启动时的低速性能,使电机输出的转矩能满足生产启动的要求。 在异步电机变频调速系统中,转矩的控制较复杂.在低频段,由于电阻、漏电抗的影响不容忽略,若仍保持V/f为常数,则磁通将减小,进而减小了电机的输出转矩。为此,在低频段要对电压进行适当补偿以提升转矩。可是,漏阻抗的影响不仅与频率有关,还和电机电流的大小有关,准确补偿是很困难的。近年来国外开发了一些能自行补偿的变频器,但所需计算量大,硬件、软件都较复杂,因此一般变频器均由用户进行人工设定补偿。针对我们所使用的变频器,转矩提升量设定为1%~5%之间比较合适。 2.3 如何设定加、减速时间 电机的运行方程式: 式中:Tt为电磁转矩;T1为负载转矩 电机加速度dw/dt取决于加速转矩(Tt,T1),而变频器在启、制动过程中的频率变化率则由用户设定。若电机转动惯量J、电机负载变化按预先设定的频率变化率升速或减速时,有可能出现加速转矩不够,从而造成电机失速,即电机转速与变频器输出频率不协调,从而造成过电流或过电压。因此,需要根据电机转动惯量和负载合理设定加、减速时间,使变频器的频率变化率能与电机转速变化率相协调。检查此项设定是否合理的方法是按经验选定加、减速时间设定。若在启动过程中出现过流,则可适当延长加速时间;若在制动过程中出现过流,则适当延长减速时间;另一方面,加、减速时间不宜设定太长,时间太长将影响生产效率,特别是频繁启、制动时。我们将加速时间设定为15s,减速时间设定为5s。 2.4 频率跨跳 V/f控制的变频器驱动异步电机时,在某些频率段。电机的电流、转速会发生振荡,严重时系统无法运行,甚至在加速过程中出现过电流保护使得电机不能正常启动,在电机轻载或转动量较小时更为严重。因此变通变频器均备有频率跨跳功能,用户可以根据系统出现振荡的频率点,在V/f曲线上设置跨跳点及跨跳点宽度。当电机加速时可以自动跳过这些频率段,保证系统正常运行。 2.5 过负载率设置 该设置用于变频器和电动机过负载保护。当变频器的输出电流大于过负载率设置值和电动机额定电流确定的OL设定值时,变频器则以反时限特性进行过负载保护(OL),过负载保护动作时变频器停止输出。 2.6 电机参数的输入 变频器的参数输入项目中有一些是电机基本参数的输入,如电机的功率、额定电压、额定电流、额定转速、极数等。这些参数的输入非常重要,将直接影响变频器中一些保护功能的正常发挥,一定要根据电机的实际参数正确输入,以确保变频器的正常使用。 3 结语 综上所述,虽然制造商在开发、制造变频器时充分考虑了用户的需要,设计了多种可供用户选择的设定、保护和显示功能。但如何充分发挥这些功能,合理使用变频器,仍是用户需要注意的问题,一些项目的设定值仍需摸索,以便用好变频器,充分发挥其在生产中的作用。
各位亲们,陶氏反渗透膜及东丽反渗透膜,长期可以提供比市场价更优惠更实惠的价格。

31万

积分

2万

金钱

4万

帖子

超脱水师

己身不正 何以正人

2012年度“十大风云人物”勋章竞拍勋章财富勋章十大风云人物2011年度十大风云人物勋章季度优秀版主勋章2013年“十大风云人物”勋章2015守护天使

QQ
67
发表于 2009-3-28 13:14:11 | 只看该作者

变频器在各行业的应用

油田应用   目前,在油田抽油设备中,以游梁式磕头抽油烟机应用最为普遍,数量也最多。但是,传统的磕头机普遍存在着起动冲击大,运行耗电多,大马拉小车、效率低下等诸多问题,加之油井情况复杂,稠油、结蜡、沙卡现象较多,断杆、烧电机等现象经常发生,对电动机没有可靠的保护功能,设备维修量大,为此,急需对现有的抽油机设备进行改造。   在前期井中,由于刚开采,储油量大,提高转速的方式,让变频器运行至65Hz,频率提高了1/3,相应地电机转速提高了30%,其采油量也相应提高,其综合采油率可比工频情况下多采油20%,工效提高了1.2倍,很受油田采油工的欢迎。   在中、后期井中,由于井储量减少,电机若仍工频运行,势必浪费电能,造成不必要的损耗,因而我们采用降低转速的方式,减少冲程,一般将变频器的频率运行至35~40Hz之间,这样电机转速下降了30%,加之采油设备一般负荷较轻,节电率可达25左右,而且提高了功率因数,减少了无功损耗。   变频器具有软启/软停功能,在电机启动时,减少了对抽油烟杆的机械冲击,对稠油、结蜡、沙卡、等都能有效地进行保护停机,以保护电机及机械设备,减少维修量,防止断杆,变频器对过压、欠压、过载、短路及电机失速都能可靠地保护,对延长电机的寿命,减少机械设备的磨损等,都具有很好的作用。 风机应用(焦化)   传统风机流量的设计均以最大的风量需求来设计,其调整方式采用档板、风门、回流、起流、起停电机等方式控制,开法形成闭路回路控制,也较不考虑省电的观念。电气控制采用直接或Y-△起动,无法具有软起动的功能,机械冲大,转动寿命短,震动及噪音较大,需要的电源的电源(电网)容量大,功因较低等是其主要的问题点。 水泥厂应用 ·机立窑供风系统变频调速装置   日业变频器具有软起动功能,电机启动时,无大电流冲击,延长设备使用寿命;由于日业变频器可任意调节风机电机转速,因此可按所需风量准确调节风量,无须旁路放风、减少水泥粉尘污染、节电可达25%--40%。综合效益可观,一般6~12个月可收回全部投资。 ·生料均化给料系统   将所有送料口处的送料电机用变频器同步进行无极调速,等比例送料,操作人员只需观察螺旋给料机的总输料量,调整送料电机转速快慢即可。这样均化效果大大提高,非生产耽搁时间减少50%以上。 ·成球预加水系统   生料成球工序是影响水泥熟料烧结质量的关键工序之一,其中,料、水比例直接影响成球好坏。变频器通过对成球预加水泵电机转速进行无极调速调节,时刻跟踪生料供给量,进行等比例加水,从而使半机械化、半手工加"人脑"(即凭经验)控制的落后工艺跨上了全自动化、电脑控制的新台阶。 ·水泥选粉系统   根据水泥桔的不同,要求水泥成品粉粒细度不同,每次都重复这样的过程:   拆开机组→调整扇页→装上机组→试选→检验细度直到选出的粉粒达到要求的细度为止。变频改造之后的选粉系统,只须按下提前预置的不同标号细度按钮,选粉机选出的粉粒就对应所需要的细度。做到了连续化、自动化生产,即节约了宝贵的时间又提高效率,降低劳动强度,综合效益明显。 多泵恒压供水   本系列是为风机,泵类,空气压缩机流量和压力控制特点研制的专用变频器,产品产设计主要考虑到专用,效益,国情,节能自动化等特性;本机具有一般变频器的特性,和节能功因控制(PFC),低噪音运转、PID反馈,有短路及接地故障保护,允许有电压波动的电网环境,因此比一般其他品牌变频器更具有特色。   本产品也考虑到恒压供水(气)装置的应用需求,适合多驱动电机的联锁控制,并针对振荡及追逐(hunting)作了相诮的技术处理,可与PLC,电脑或总线进行通讯,客户使用时会更加方便,达到理想效果。 技术特点 风机水泵专用设计   内置PID调节器   节能省电模式   多泵恒压水的应用 变频器在建筑机械有限公司龙门吊上的配套应用 MG门式起重机 说明: 是针对桥梁建设而设计的专利产品,门机的主梁采用蜂窝梁设计,具有自重 轻,载荷大,抗风能力强等优点;成熟的销连接机构,不但牢固可靠,拼装尤为快捷 (打一个钢销仅需几分钟);灵活的杆件支腿,工地转移可拆成单件,运输极为方便; 最小的装机容量,解决了野外施工用电的困难。
各位亲们,陶氏反渗透膜及东丽反渗透膜,长期可以提供比市场价更优惠更实惠的价格。

31万

积分

2万

金钱

4万

帖子

超脱水师

己身不正 何以正人

2012年度“十大风云人物”勋章竞拍勋章财富勋章十大风云人物2011年度十大风云人物勋章季度优秀版主勋章2013年“十大风云人物”勋章2015守护天使

QQ
68
发表于 2009-3-28 13:15:03 | 只看该作者

变频器基本参数的调试

作者:彭韩星 变频器功能参数很多,一般都有数十甚至百个参数供用户选择。实际应用中,没必要对每一参数都进行设置和调试,多数只要采用出厂设定值即可。但有些参数由于和实际使用情况有很在关系,具有的还相互关联,因此要根据实际进行设定和调试。   因各类型变频器功能参数的名称也不一致,为叙述方便,以富士变频器基本参数名称为例。由于基本参数是各类型变频器几乎都有完全可以做到触类旁通。 一:加减速时间   加速时间就暗输出频率从0上升到最大频率所需时间,减速时间是指从最大频率下降到0所需时间。通常用频率设定信号上升/下降来确定加减速时间。在电动机加速时须限制频率设定的上升率以防止过电压。   加速时间设定要求:将加速电流限制在变叔器过电流容量以下,不使过流而引起变频器跳闸;减速时间设定要点是:防止平滑电路电压过大,不使再生过压失速而使变频器跳闸。加减速时间可根据负载计算出来,但在调试中常采取按负载和经验先设定较长加减速时间,通过起/停电动机观察有无过电流、过电压报警;然后将加减速设定时间逐渐缩短,以运转中不发生报警为原则,重复操作几次,便可确定出最佳加减速时间。 二:转矩提升   又叫转矩补偿,是为补偿因电动机定子绕组电阻所引起的低速时转矩降低,而把低频率范围F/V增大的方法。设定为自动时,可使加速时的电压自动提升以补偿起动转矩,使电动机加速顺利进行。如采用手动补偿时,根据负载特性,尤其是负载的起动特性,通过试验可选出较好曲线。对于变转转矩负载,如选择不当会出现低速时的输出电压过高,而浪费电能的现象,甚至还会出现电动机带负载起动时电流大,而转速上不去的现象。 三:电子热过载保护   本功能为保护电动机过热面设置,它是变频器内CPU根据运转电流值和频率计算出电动机的温升,从而进行过热保护。本功能只适用于“一拖一”场合,而在“一拖多”时,应在名台电动机上加装热继电器。   电子热保护设定值(%)=[电动机额定电流(A)/变频器额定输出电流(A)]*100%; 四:频率限定   即变频器输出频率上下限幅值。频率限制是为防止误操作或外接频率设定信号源出故障,而引起输出频率的过高或过低,以防损坏设备的一种保护功能。在应用中按实际情况设定即可。此功能还可作限速使用,如有的皮带输送机,由于输送物料不太多,为减少机械和皮带的磨损,可采用变频器驱动,并将变频器上限频率设定为某一频率值,这样就可使皮带输送机运行在一个固定,较低的工作速度上。 五:偏置频率   有的又叫偏差频率或频率偏差设定。其用途是当频率由外部模拟信号(电压或电流)进行设定时,可用此功能调整频率设定信号最低时输出频率的高低。有的变频器当频率设定信号为0%时,偏差值可作用在0~FMAX范围内,有的变频器(如三垦)还可对偏置极性进行设定。如在调试中当频率设定信号为0%时,变频器输出频率不为0%HZ,而为XHZ,则此时将偏置频率设定为负的XHZ即可使变频器输出频率为0HZ。 六:频率设定信号增益   此功能仅用外部模拟信号设定频率时才有效。它是用来弥补外部设定信号电压与变频器内电压(+10V)的不一致问题:同时方便模拟设定信号电压的选择,设定时,当模拟输入信号为最大时(如10V、5V、或20MA),求出可输出F/V图形的频率百分数并以此为参数进行设定即可:如外部设定信号为0~~5V时,若将增益信号设定为200%即可。 七:转矩限制   可分为驱动转矩限制和制动转矩限制二种。它是根据变频器输出电压和电流值,经CPU进行转矩计算,其可对加减速和恒速运行时的冲击负载恢复特性有显著改善。转矩限制功能可实现自动加速和减速控制。假设加减速时间小于负载惯量时间时,也能保证电动机按照转矩设定值自动加速和减速。   驱动转矩功能提供了强大的起动转矩,在稳态运转时,转矩功能将控制电动机转差,而将电动机转矩限制在电动机转差,而将电动机转矩限制在最大设定值内,当负载转矩突然增大时,甚至在加速时间设定过短时,也不会引起变频器跳闸。在加速时间设定过短时,电动机转矩也不会超过最大设定值。驱动转矩大对起动有利,以设置为80~~~100%较妥。   制动转矩设定数值越小,其制动力越大,适合急加减速的场合,如制动转矩设定数值设置过大会出现过压报警现象。如制动转矩设定为0%,可使加到主电容器的再生辛勤工作总量接近于0,从而使电动机在减速时,不使用制动电阻也能减速至停转而不会跳闸。但在有的负载上,如制动转矩设定为0%时,减速时会出现短暂空转现象,造成变频器反复起动,电流大幅度波动,严重时会使变频器跳闸,就引起注意。 八:加减速模式选择   又叫加减速曲线选择,一般变频器有线性、非线性和S三种曲线,通常大多选择线性曲线:非线性曲线适用于变转矩负载,如风机等;S曲线适用于恒转矩负载,其加减速变化较为缓慢。设定时可根据负载转矩特性,选择相应曲线,但也有例外,笔者在调试一台锅炉引风机的变频器时,先将加减速曲线选择非线性曲线,一起动运转变频器就跳闸,调整改变许多参数无效果,后改为S曲线后就正常了。究其原因是:起动前引风机由于烟道烟气流动而自行转动,且反转而成为负向负载,这样选取了S曲线,使刚起动时的频率上升速度较慢,从而避免了变频器跳闸的发生,这是针对没有起动直流制动功能的变频器所采用的方法。 九:转矩矢量控制   矢量控制是基于理论上认为:异步电动机与直流电动机具有相同的转矩产生机理。矢量控制方式变是将定子电流分解成规定的磁场电流和转矩电流表,分别进行控制,同时将两者合成后的定子电流输出给电动机。因此从原理上可得到与直流电动机相同的控制性能。采用转矩矢量控制功能,电动机在各种运行条件下都能输出最大转矩,尤其是电动机在低速运行区域。   现在的变频器几乎都采用无反馈矢量控制,由于变频器能根据负载电流大小和相位进行转矩补偿,使电动机具有很硬的力学特性,对于多数场合已能满足要求,不需要变频器的外部设置速度反馈电路。这一功能的设定,可根据实际情况在有效和无效中选择一项即可。 与之有关的功能是转差补偿控制,其作用是为补偿由负载波动而引起的速度偏差,可加上对应于负载电流的转差频率。这一功能主要用于定位控制。 十:节能控制 风机、水泵都属于减转矩负载,即随着转速的下降,负载转矩与转速的的平方成比例减小,而具有节能控制功能的变频器设计有专用V/F模式,这种模式可改善电动机和变频器的效率,其可根据负载电流自动降低变频器输出电压,从而达到节能目的,可根据具体情况设置为有效为有效或无效。
各位亲们,陶氏反渗透膜及东丽反渗透膜,长期可以提供比市场价更优惠更实惠的价格。

31万

积分

2万

金钱

4万

帖子

超脱水师

己身不正 何以正人

2012年度“十大风云人物”勋章竞拍勋章财富勋章十大风云人物2011年度十大风云人物勋章季度优秀版主勋章2013年“十大风云人物”勋章2015守护天使

QQ
69
发表于 2009-3-28 13:17:05 | 只看该作者

变频器频率设置的几种方法

变频器是近几年在兴起的一种调速节能新产品,它是电力电子技术和计算机应用技术的完美结合,因其调速精度高、操作方便,并且节约能源(输出频率小于50Hz时),现已被广泛应用在机械、化工、冶金、轻工等领域。根据实际应用的需要,弯频器频率设置的方法有不同类型,现以日本三菱公司FR-500系列变频器为例,说明几种频率设置的特点。   变频器频率设置的方法可以分两大类,第一类是利用变频器操作面板进行频率设置,第二类是利用变频器控制端子进行频率设置。第一类利用变频器操作面板进行频率设置,只需操作面板上的上升、下降键,就可以实现频率的设定。该方法不需要外部接线,方法简单,频率设置精度高,属数字量频率设置,适用于单台变频器的频率设置。第二类是利用变频器控制端子进行频率设置,又分两种方法,第一种是利用外接电位器进行频率设置;第二种是利用变频器控制端子的特写功能,用电动电位器进行频率设置。   第一种利用外接电位器进行频率设置,如图1,FR-500系列变频器的10端子提供标准的10V直流电压,2端子是频率设定输入端,5端子是模拟量输入公共端子。通过调整外接电位器R的2端输出电压,改变了变频器2端的输入电压值,也就改变了变频器的频率设定值,达到了频率设置的目的,该方法有以下优点:   (1) 接线简单,只需把电位器的三端分接到变频器的电压输入端,电压输出端和公共端就可。   (2) 频率设置简单,操作方便,只需轻轻转动外接电位器的旋钮,就可以进行频率设置。   (3) 安装灵活,可以根据实际需要,将外接电位器安装到任何位置,进行远距离操作。   但是,该方法也有以下缺点:   (1) 有温漂现象,由于电阻值受温度的影响,当外界温度发生变化时,电阻值了也就随之变化,频率设定值也就发生变化。   (2) 抗干扰能力低。当周围有强电磁干扰时,变频器和外接电位器的连接电缆线内会产生感应电压,使输入到变频器2端的电压值发生变化,也就使频率设定值发生变化,影响设定频率的稳定。   (3) 电位器安装距离受到一定限制。理论上讲,变频器2端的电压变化范围是0-10V,但如果外接电位器安装距离太远,连接电缆就会产生压降,变频器2端电压也就达不到10V,从而使输出频率达不到最高设定值。   因此,该变频器频率设置方法一般应用在调速精度低、周围干扰小、环境温度变化小的场合,属模拟量调节。   第二种方法是利用变频器控制端子的特定功能,通过设置变频器的内部参数,可以使端子RH、RM成为电动电位器,即当RH与公共端SD之间接通时,变频器输出频率上升当RM与SD之间接通时,变频器输出频率下降达到频率设置的目的,如图2,同第一种方法相比,该方法具有以下优点:   (1) 频率设置精度高,外接电位器法属模拟量设置方法,频率变化范围为最大输出频率的±0.2%以内,而用电动电位器设置频率,频率变化范围为最大输出频率的0.01%以内。   (2) 抗干扰能力强。由于这它只是开关信号输入,因此不受周围电磁场的干扰。   (3) 无温漂现象。由于取消了外接电位器,因此,不受环境温度变化的影响。   (4) 安装灵活,可以将按钮SB1,SB2安装到任何位置。   (5) 同步性能好,可以同时实现多台变频器的频率升高和降低。   总之,我们应根据实际需要,合理选择频率设置方法,以达到应用效果。
各位亲们,陶氏反渗透膜及东丽反渗透膜,长期可以提供比市场价更优惠更实惠的价格。

31万

积分

2万

金钱

4万

帖子

超脱水师

己身不正 何以正人

2012年度“十大风云人物”勋章竞拍勋章财富勋章十大风云人物2011年度十大风云人物勋章季度优秀版主勋章2013年“十大风云人物”勋章2015守护天使

QQ
70
发表于 2009-3-28 13:17:39 | 只看该作者

变频器能耗制动应用高度分析




1.引言 近年来,随着变频器本身功能的不断完善,交流调速技术有了长足的进步。如何在不同应用条件下充分开发变频器自身功能、有效的降低设备的改造成本已成为一个重要问题。与通常的控制方式相比,利用变频器直流制动功能实现交流拖动系统准确停车的设计方案省去了价值昂贵的变频器专用制动单元/制动电阻,有效降低了设备改造成本,工作稳定可靠、控制精度高。 2.VVVF能耗制动的理论分析 通用变频器提供的制动方式主要有:能耗制动、再生制动、整流回馈等。在转动惯量较大的工况条件下,变频器厂家所建议采用的一般方式是外接制动电阻和制动单元的再生制动方式,某些情况下可以配合采用直流制动。这一设计思路基本为大多数目内用户所接受,并在实际使用中获得了较好的效果。但该方案需另外购买变频器厂家提供的专用制动单元/制动电阻,无形中增大了改造成本。 所谓“直流制动”,一般指当变频器的输出频率接近为零,电机的转速降低到一定数值时,变频器改向异步电动机定子绕组中通入直流,形成静止磁场,此时电动机处于能耗制动状态,转动着的转子切割该静止磁场而产生制动转矩,使电动机迅速停止。在电动机制动过程中,由于变频器输出频率逐渐降低,则定子绕组内的同步磁场转速低于转子转速,电动机处于再生制动过程,此时旋转系统存储的动能转换成电能热损耗的形式消耗于异步电动机的转子回路中,为防止电动机减速过程中所形成的再生发电制动以及直流制动过程中的能量回馈,造成变频器和电机的损坏,需串入专用制动单元/制动电阻。 一般交流电动机制动时的机械特性曲线。设A点为正常工作点。电动机同步旋转磁场转速为: 为电机同步转速,为电源频率,为电动机磁极对数。 在通常电动机的制动过程中,电动机先减速,电动机同步旋转磁场转速低于转子转速,工作点在同一转速下由曲线①的A点跳至曲线②的B点,即从第一象限过渡到第二象限称之为同一转速下特性的跳转,则电机得到反方向的制动转矩T进入发电制动状态,拖动系统沿图1中曲线②迅速降速,当低于某一转速后,向定子绕组输入直流,形成固定磁场,产生制动转矩。在这一过程中,电机将经过再生发电制动和能耗制动而最终停止。 从理论上分析,如果能够控制电动机同步磁场的转速缓慢下降,使电动机在同一转速下特性跳转时,特性曲线维持在第一象限,如图1中虚线组③所示缓慢降速,不跳转至第二象限则拖动系统在降速过程中可以有效的避免发生再生制动过程。如图1所示,当电机转速在小于临界转速nh的情况下接入直流进行制动,并相应控制接入直流的大小和时间,理论上分析电机只经历有限的能耗制动阶段,不会过热。而变频器良好的内、外特性可以保证上述各项条件的满足。 但是,采用该方法有一些必要的前提条件,首先,系统不能频繁进行启/停,否则会造成变频器直流电路故障。其次,提升机、电梯等下放重物的工况不适宜采用。再次,系统降速时间不能过短,即降速不能过快,否则工作点将进入第二象限发生再生制动过程,引起电机过热。 3.结束语 理论上的分析可以证明,该设计思路是完全合理的。实践中,变频器采用直流制动并配合适当的直流制动时间,起始频率和制动准位所产生的电机刹车效果也比较明显。
各位亲们,陶氏反渗透膜及东丽反渗透膜,长期可以提供比市场价更优惠更实惠的价格。

31万

积分

2万

金钱

4万

帖子

超脱水师

己身不正 何以正人

2012年度“十大风云人物”勋章竞拍勋章财富勋章十大风云人物2011年度十大风云人物勋章季度优秀版主勋章2013年“十大风云人物”勋章2015守护天使

QQ
71
发表于 2009-3-28 13:19:58 | 只看该作者

富士变频器的常见故障及维修对策

对于使用变频器的朋友来说富士变频器应该是个不陌生的品牌,它以其简单实用的操作,较高的性价比,曾经占据着中国变频器市场的半壁江山,随着时间的推移,这个在中国市场上广泛使用的变频器也进入了故障的高发期,在日常使用中碰到变频器发生故障,我们生产第一线的工作人员又如何找到故障原因并排除故障,成为摆在我们日常操作人员面前的一大问题,下面我们就富士变频器的一些常见故障及判断解决方法和广大使用者作一个探讨。 富士变频器经过近二十年的发展无论是在机器外形体积上,还是在线路板新器件的应用上及元器件的集成度上,都有了长足的发展,新产品更是不断推陈出新,从早期的2系列发展到现在的11系列,并根据负载特性的不同推出了通用型的G系列,风机水泵专用的P系列,简易型的E系列及K系列,此外还有超小型的C系列,以及电梯专用的VG3变频器。以及早期大功率的G7,P7系列(30kW以上),此外富士变频器还提供了一系列的选件卡包括干结点的继电器输出卡,数字量模拟量的接口卡,PG反馈卡和两台电机同步运行的同步卡。一系列的变频器的推出和选件卡的应用基本上满足了不同用户的需要,也成为富士变频器能够长足发展的基础。 l OC1,OC2,OC3 故障显示OC1,OC2,OC3,这是富士变频器最常见的故障之一了,它包括了变频器加速中过电流,减速中过电流,和恒速中过电流,此故障产生的原因主要有以下几种: (1) 加速时间过短,这是我们过电流现象中最常见的。依据不同的负载情况我们相应地调整加减速时间,就能消除此故障。 (2) 大功率晶体管的损坏也可能引起OC报警,富士变频器的大功率晶体管随着半导体技术的发展经过了几次换代,从早期的用于G2(P2),G5(P5),G7(P7)系列的GTR模块,到G9(P9)系列的IGBT模块,直到现在使用的IPM模块,无论从封装技术还是保护性能,都有了很大的提高,高耐压、大电流、高频、低耗、静音、多保护功能已成为大功率晶体管模块的发展趋势。大功率晶体管模块的损坏主要可能有以下几种原因造成: a) 输出负载发生短路; b) 负载过大,大电流持续出现; c) 负载波动很大,导致浪涌电流过大,都可能引起OC报警,损坏功率模块。 (3) 驱动大功率晶体管工作的驱动电路的损坏也是导致过流报警的一个原因。富士G7S、G9S分别使用了PC922,PC923两种光耦作为驱动电路的核心部分,由于内置放大电路,线路设计简单,被包括富士变频器在内的多家变频器厂家广泛使用。驱动电路损坏表现出来最常见的现象就是缺相,或三相输出电压不平衡。 (4) 检测电路的损坏也会导致变频器显示OC报警,检测电流的霍尔传感器由于受温度,湿度等环境因数的影响,工作点很容易发生飘移,导致OC报警。 ·开关电源损坏 开关电源损坏一个比较明显的特征就是变频器上电无显示,富士G5S采用了两级开关电源,它先把中间直流回路的直流电压由500多V转变成300多V,然后再通过一级开关电源输出5V,24V等多路电源,开关电源的损坏常见的有开关管击穿,脉冲变压器烧坏,以及次级输出整流两极管损坏,滤波电容使用时间过长,导致电容特性变化,带载能力下降,也很容易引起开关电源的损坏。富士G9S则使用了一片开关电源专用的波形发生芯片,由于受到主回路高电压的窜入,经常会导致此芯片的损坏,由于此芯片市场很少能买到,引起的损坏较难修复。 ·整流桥损坏 整流桥的损坏也是富士变频器常见的故障,富士G7S使用了一块带有可控硅的整流模块,它与普通整流桥的区别就在于它用可控硅替代了主回路接触器,提高了机器的可靠性。G9S小功率机器整流桥则是集成可控硅与开关管于一体。整流桥的损坏常与机器外部电源有密切联系,当整流桥发生故障后,我们不能再盲目上电源,应先检查外围设备。 · LV, OV 欠压和过压也是富士变频器的常见故障,这有主电源因素而引起的故障报警,也有机器检测电路损坏而引起报警的可能性,富士G5S使用了一片定做的电压检测厚膜电话来检测主回路直流电压的高低,G7S,G9S则是直接从直流主回路采样检测,其检测效果是一样的。 此外富士变频器也会经常出现一些与主板有密切联系的报警,包括(Err,Er1,Er7,Er3)等等,变频器的故障是多种多样的,但变频器的原理都大同小异,只是在功能实现的线路上有所区别,这需要我们在实践中不断总结,更好更快地寻找问题,解决问题,也希望我们这些从事变频维修的人员能为广大用户提供更多的帮助。
各位亲们,陶氏反渗透膜及东丽反渗透膜,长期可以提供比市场价更优惠更实惠的价格。

31万

积分

2万

金钱

4万

帖子

超脱水师

己身不正 何以正人

2012年度“十大风云人物”勋章竞拍勋章财富勋章十大风云人物2011年度十大风云人物勋章季度优秀版主勋章2013年“十大风云人物”勋章2015守护天使

QQ
72
发表于 2009-3-28 13:20:48 | 只看该作者

PLC与变频器的组合应用

引言 可编程控制器(PLC)是一种数字运算与操作的控制装置。PLC作为传统继电器的替代产品,广泛应用于工业控制的各个领域。由于PLC可以用软件来改变控制过程,并有体积小,组装灵活,编程简单,抗干扰能力强及可靠性高等特点,特别适用于恶劣环境下运行。 当利用变频器构成自动控制系统进行控制时,很多情况下是采用PLC和变频器相配合使用,例如我厂二催化的自动吹灰系统。PLC可提供控制信号和指令的通断信号。一个PLC系统由三部分组成,即中央处理单元、输入输出模块和编程单元。本文介绍变频器和PLC进行配合时所需注意的事项。 1.开关指令信号的输入 变频器的输入信号中包括对运行/停止、正转/反转、微动等运行状态进行操作的开关型指令信号。变频器通常利用继电器接点或具有继电器接点开关特性的元器件(如晶体管)与PLC)相连,得到运行状态指令,如图1所示。 在使用继电器接点时,常常因为接触不良而带来误动作;使用晶体管进行连接时,则需考虑晶体管本身的电压、电流容量等因素,保证系统的可靠性。 在设计变频器的输入信号电路时还应该注意,当输入信号电路连接不当时有时也会造成变频器的误动作。例如,当输入信号电路采用继电器等感性负载时,继电器开闭产生的浪涌电流带来的噪音有可能引起变频器的误动作,应尽量避免。图2与图3给出了正确与错误的接线例子。 当输入开关信号进入变频器时,有时会发生外部电源和变频器控制电源(DC24V)之间的串扰。正确的连接是利用PLC电源,将外部晶体管的集电极经过二极管接到PLC。如图4所示。 2.数值信号的输入
变频器中也存在一些数值型(如频率、电压等)指令信号的输入,可分为数字输入和模拟输入两种。数字输入多采用变频器面板上的键盘操作和串行接口来给定;模拟输入则通过接线端子由外部给定,通常通过0~10V/5V的电压信号或0/4~20mA的电流信号输入。由于接口电路因输入信号而异,因此必须根据变频器的输入阻抗选择PLC的输出模块。图5为PLC与变频器之间的信号连接图。 当变频器和PLC的电压信号范围不同时,如变频器的输入信号为0~10V,而PLC的输出电压信号范围为0~5V时;或PLC的一侧的输出信号电压范围为0~10V而变频器的输入电压信号范围为0~5V时,由于变频器和晶体管的允许电压、电流等因素的限制,需用串联的方式接入限流电阻及分压方式,以保证进行开闭时不超过PLC和变频器相应的容量。此外,在连线时还应注意将布线分开,保证主电路一侧的噪音不传到控制电路。 通常变频器也通过接线端子向外部输出相应的监测模拟信号。电信号的范围通常为0~10V/5V及0/4~20mA电流信号。无论哪种情况,都应注意:PLC一侧的输入阻抗的大小要保证电路中电压和电流不超过电路的允许值,以保证系统的可靠性和减少误差。另外,由于这些监测系统的组成互不相同,有不清楚的地方应向厂家咨询。 另外,在使用PLC进行顺序控制时,由于CPU进行数据处理需要时间,存在一定的时间延迟,故在较精确的控制时应予以考虑。 因为变频器在运行中会产生较强的电磁干扰,为保证PLC不因为变频器主电路断路器及开关器件等产生的噪音而出现故障,将变频器与PLC相连接时应该注意以下几点: (1)对PLC本身应按规定的接线标准和接地条件进行接地,而且应注意避免和变频器使用共同的接地线,且在接地时使二者尽可能分开。 (2)当电源条件不太好时,应在PLC的电源模块及输入/输出模块的电源线上接入噪音滤波器和降低噪音用的变压器等,另外,若有必要,在变频器一侧也应采取相应的措施。 (3)当把变频器和PLC安装于同一操作柜中时,应尽可能使与变频器有关的电线和与PLC有关的电线分开。 (4)通过使用屏蔽线和双绞线达到提高噪音干扰的水平。 结束语 PLC和变频器连接应用时,由于二者涉及到用弱电控制强电,因此,应该注意连接时出现的干扰,避免由于干扰造成变频器的误动作,或者由于连接不当导致PLC或变频器的损坏。
各位亲们,陶氏反渗透膜及东丽反渗透膜,长期可以提供比市场价更优惠更实惠的价格。

31万

积分

2万

金钱

4万

帖子

超脱水师

己身不正 何以正人

2012年度“十大风云人物”勋章竞拍勋章财富勋章十大风云人物2011年度十大风云人物勋章季度优秀版主勋章2013年“十大风云人物”勋章2015守护天使

QQ
73
发表于 2009-3-28 13:23:06 | 只看该作者

变频器的控制方式及应用选型

1引言   变频技术是应交流电机无级调速的需要而诞生的。20世纪60年代以后,电力电子器件经历了SCR(晶闸管)、GTO(门极可关断晶闸管)、BJT(双极型功率晶体管)、MOSFET(金属氧化物场效应管)、SIT(静电感应晶体管)、SITH(静电感应晶闸管)、MGT(MOS控制晶体管)、MCT(MOS控制晶闸管)、IGBT(绝缘栅双极型晶体管)、HVIGBT(耐高压绝缘栅双极型晶闸管)的发展过程,器件的更新促进了电力电子变换技术的不断发展。20世纪70年代开始,脉宽调制变压变频(PWM-VVVF)调速研究引起了人们的高度重视。20世纪80年代,作为变频技术核心的PWM模式优化问题吸引着人们的浓厚兴趣,并得出诸多优化模式,其中以鞍形波PWM模式效果最佳。20世纪80年代后半期开始,美、日、德、英等发达国家的VVVF变频器已投入市场并获得了广泛应用。 2变频器控制方式   低压通用变频输出电压为380~650V,输出功率为0.75~400kW,工作频率为0~400Hz,它的主电路都采用交?仓豹步坏缏贰F淇刂品绞骄?历了以下四代。 2.1U/f=C的正弦脉宽调制(SPWM)控制方式 其特点是控制电路结构简单、成本较低,机械特性硬度也较好,能够满足一般传动的平滑调速要求,已在产业的各个领域得到广泛应用。但是,这种控制方式在低频时,由于输出电压较低,转矩受定子电阻压降的影响比较显著,使输出最大转矩减小。另外,其机械特性终究没有直流电动机硬,动态转矩能力和静态调速性能都还不尽如人意,且系统性能不高、控制曲线会随负载的变化而变化,转矩响应慢、电机转矩利用率不高,低速时因定子电阻和逆变器死区效应的存在而性能下降,稳定性变差等。因此人们又研究出矢量控制变频调速。 2.2电压空间矢量(SVPWM)控制方式 它是以三相波形整体生成效果为前提,以逼近电机气隙的理想圆形旋转磁场轨迹为目的,一次生成三相调制波形,以内切多边形逼近圆的方式进行控制的。经实践使用后又有所改进,即引入频率补偿,能消除速度控制的误差;通过反馈估算磁链幅值,消除低速时定子电阻的影响;将输出电压、电流闭环,以提高动态的精度和稳定度。但控制电路环节较多,且没有引入转矩的调节,所以系统性能没有得到根本改善。 2.3矢量控制(VC)方式 矢量控制变频调速的做法是将异步电动机在三相坐标系下的定子电流Ia、Ib、Ic、通过三相-二相变换,等效成两相静止坐标系下的交流电流Ia1Ib1,再通过按转子磁场定向旋转变换,等效成同步旋转坐标系下的直流电流Im1、It1(Im1相当于直流电动机的励磁电流;It1相当于与转矩成正比的电枢电流),然后模仿直流电动机的控制方法,求得直流电动机的控制量,经过相应的坐标反变换,实现对异步电动机的控制。其实质是将交流电动机等效为直流电动机,分别对速度,磁场两个分量进行独立控制。通过控制转子磁链,然后分解定子电流而获得转矩和磁场两个分量,经坐标变换,实现正交或解耦控制。矢量控制方法的提出具有划时代的意义。然而在实际应用中,由于转子磁链难以准确观测,系统特性受电动机参数的影响较大,且在等效直流电动机控制过程中所用矢量旋转变换较复杂,使得实际的控制效果难以达到理想分析的结果。 2.4直接转矩控制(DTC)方式 1985年,德国鲁尔大学的DePenbrock教授首次提出了直接转矩控制变频技术。该技术在很大程度上解决了上述矢量控制的不足,并以新颖的控制思想、简洁明了的系统结构、优良的动静态性能得到了迅速发展。目前,该技术已成功地应用在电力机车牵引的大功率交流传动上。 直接转矩控制直接在定子坐标系下分析交流电动机的数学模型,控制电动机的磁链和转矩。它不需要将交流电动机等效为直流电动机,因而省去了矢量旋转变换中的许多复杂计算;它不需要模仿直流电动机的控制,也不需要为解耦而简化交流电动机的数学模型。 2.5矩阵式交—交控制方式 VVVF变频、矢量控制变频、直接转矩控制变频都是交-直-交变频中的一种。其共同缺点是输入功率因数低,谐波电流大,直流电路需要大的储能电容,再生能量又不能反馈回电网,即不能进行四象限运行。为此,矩阵式交-交变频应运而生。由于矩阵式交-交变频省去了中间直流环节,从而省去了体积大、价格贵的电解电容。它能实现功率因数为l,输入电流为正弦且能四象限运行,系统的功率密度大。该技术目前虽尚未成熟,但仍吸引着众多的学者深入研究。其实质不是间接的控制电流、磁链等量,而是把转矩直接作为被控制量来实现的。具体方法是: ——控制定子磁链引入定子磁链观测器,实现无速度传感器方式; ——自动识别(ID)依靠精确的电机数学模型,对电机参数自动识别; ——算出实际值对应定子阻抗、互感、磁饱和因素、惯量等算出实际的转矩、定子磁链、转子速度进行实时控制; ——实现Band?睟and控制按磁链和转矩的Band-Band控制产生PWM信号,对逆变器开关状态进行控制。 矩阵式交?步槐淦稻哂锌焖俚淖?矩响应(<2ms),很高的速度精度(±2%,无PG反馈),高转矩精度(<+3%);同时还具有较高的起动转矩及高转矩精度,尤其在低速时(包括0速度时),可输出150%~200%转矩。 3变频器控制方式的合理选用 控制方式是决定变频器使用性能的关键所在。目前市场上低压通用变频器品牌很多,包括欧、美、日及国产的共约50多种。选用变频器时不要认为档次越高越好,而要按负载的特性,以满足使用要求为准,以便做到量才使用、经济实惠。表1中所列参数供选用时参考。 4转矩控制型变频器的选型及相关问题 基于调速方便、节能、运行可靠的优点,变频调速器已逐渐替代传统的变极调速、电磁调速和调压调速方式。在推出PWM磁通矢量控制的变频器数年后,1998年末又出现采用DTC控制技术的变频器。ABB公司的ACS600系列是第一代采用DTC技术的变频器,它能够用开环方式对转速和转矩进行准确控制,而且动态和静态指标已优于PWM闭环控制指标。 直接转矩控制以测量电机电流和直流电压作为自适应电机模型的输入。该模型每隔25μs产生一组精确的转矩和磁通实际值,转矩比较器和磁通比较器将转矩和磁通的实际值与转矩和磁通的给定值进行比较,以确定最佳开关位置。由此可以看出它是通过对转矩和磁通的测量,即刻调整逆变电路的开关状态,进而调整电机的转矩和磁通,以达到精确控制的目的。 4.1选型原则 首先要根据机械对转速(最高、最低)和转矩(起动、连续及过载)的要求,确定机械要求的最大输入功率(即电机的额定功率最小值)。有经验公式 P=nT/9950(kW) 式中——机械要求的输入功率(kW); n——机械转速(r/min); T——机械的最大转矩(N•m)。 然后,选择电机的极数和额定功率。电机的极数决定了同步转速,要求电机的同步转速尽可能地覆盖整个调速范围,使连续负载容量高一些。为了充分利用设备潜能,避免浪费,可允许电机短时超出同步转速,但必须小于电机允许的最大转速。转矩取设备在起动、连续运行、过载或最高转速等状态下的最大转矩。最后,根据变频器输出功率和额定电流稍大于电机的功率和额定电流的原则来确定变频器的参数与型号。 需要注意的是,变频器的额定容量及参数是针对一定的海拔高度和环境温度而标出的,一般指海拔1000m以下,温度在40℃或25℃以下。若使用环境超出该规定,则在确定变频器参数、型号时要考虑到环境造成的降容因素。 4.2变频器的外部配置及应注意的问题 1)选择合适的外部熔断器,以避免因内部短路对整流器件的损坏变频器的型号确定后,若变频器内部整流电路前没有保护硅器件的快速熔断器,变频器与电源之间应配置符合要求的熔断器和隔离开关,不能用空气断路器代替熔断器和隔离开关。 2)选择变频器的引入和引出电缆根据变频器的功率选择导线截面合适的三芯或四芯屏蔽动力电缆。尤其是从变频器到电机之间的动力电缆一定要选用屏蔽结构的电缆,且要尽可能短,这样可降低电磁辐射和容性漏电流。当电缆长度超过变频器所允许的输出电缆长度时,电缆的杂散电容将影响变频器的正常工作,为此要配置输出电抗器。对于控制电缆,尤其是I/0信号电缆也要用屏蔽结构的。对于变频器的外围元件与变频器之间的连接电缆其长度不得超过10m。 3)在输入侧装交流电抗器或EMC滤波器根据变频器安装场所的其它设备对电网品质的要求,若变频器工作时已影响到这些设备的正常运行,可在变频器输入侧装交流电抗器或EMC滤波器,抑制由功率器件通断引起的电磁干扰。若与变频器连接的电网的变压器中性点不接地,则不能选用EMC滤波器。当变频器用500V以上电压驱动电机时,需在输出侧配置du/dt滤波器,以抑制逆变输出电压尖峰和电压的变化,有利于保护电机,同时也降低了容性漏电流和电机电缆的高频辐射,以及电机的高频损耗和轴承电流。使用du/dt滤波器时要注意滤波器上的电压降将引起电机转矩的稍微降低;变频器与滤波器之间电缆长度不得超过3m。 5结语 变频器的选型是一项需要认真对待的工作,目前市场上低压通用变频器的品种及规格很多,选择时应按实际的负载特性,以满足使用要求为准,以便做到量才使用,经济实惠。
各位亲们,陶氏反渗透膜及东丽反渗透膜,长期可以提供比市场价更优惠更实惠的价格。

31万

积分

2万

金钱

4万

帖子

超脱水师

己身不正 何以正人

2012年度“十大风云人物”勋章竞拍勋章财富勋章十大风云人物2011年度十大风云人物勋章季度优秀版主勋章2013年“十大风云人物”勋章2015守护天使

QQ
74
发表于 2009-3-28 13:23:40 | 只看该作者

变频器的应用误区

误区1、使用变频器都能节电 一些文献宣称变频调速器是节电控制产品,给人的感觉是只要使用变频调速器都能节电。 实际上,变频调速器之所以能够节电,是因为其能对电动机进行调速。如果说变频调速器是节电控制产品的话,那么所有的调速设备也都可以说是节电控制产品。变频调速器只不过比其它调速设备效率和功率因数略高罢了。 变频调速器能否实现节电,是由其负载的调速特性决定的。对于离心风机、离心水泵这类负载,转矩与转速的平方成正比,功率与转速的立方成正比。只要原来采用阀门控制流量,且不是满负荷工作,改为调速运行,均能实现节电。当转速下降为原来的80%时,功率只有原来的51.2%。可见,变频调速器在这类负载中的应用,节电效果最为明显。对于罗茨风机这类负载,转矩与转速的大小无关,即恒转矩负载。若原来采用放风阀放走多余风量的方法调节风量,改为调速运行,也能实现节电。当转速下降为原来的80%时,功率为原来的80%。比在离心风机、离心水泵中的应用节电效果要小得多。对于恒功率负载,功率与转速的大小无关。水泥厂恒功率负载,如配料皮带秤,在设定流量一定的条件下,当料层厚时,皮带速度减慢;当料层薄时,皮带速度加快。变频调速器在这类负载中的应用,不能节电。 与直流调速系统比较,直流电动机比交流电动机效率高、功率因数高,数字直流调速器与变频调速器效率不相上下,甚至数字直流调速器比变频调速器效率略高。所以,宣称使用交流异步电动机和变频调速器比使用直流电动机和直流调速器要节电,理论和实践证明,这是不正确的。 误区2、变频器的容量选择以电动机额定功率为依据 相对于电动机来说,变频调速器的价格较贵,因此在保证安全可靠运行的前提下,合理地降低变频调速器的容量就显得十分有意义。 变频调速器的功率指的是它适用的4极交流异步电动机的功率。 由于同容量电动机,其极数不同,电动机额定电流不同。随着电动机极数的增多,电动机额定电流增大。变频调速器的容量选择不能以电动机额定功率为依据。同时,对于原来未采用变频器的改造项目,变频调速器的容量选择也不能以电动机额定电流为依据。这是因为,电动机的容量选择要考虑最大负荷、富裕系数、电动机规格等因素,往往富裕量较大,工业用电动机常常在50%~60%额定负荷下运行。若以电动机额定电流为依据来选择变频调速器的容量,留有富裕量太大,造成经济上的浪费,而可靠性并没有因此得到提高。 对于鼠笼式电动机,变频调速器的容量选择应以变频器的额定电流大于或等于电动机的最大正常工作电流1.1倍为原则,这样可以最大限度地节约资金。对于重载起动、高温环境、绕线式电动机、同步电动机等条件下,变频调速器的容量应适当加大。 对于一开始就采用变频器的设计中,变频器容量的选择以电动机额定电流为依据无可厚非。这是因为此时变频器容量不能以实际运行情况来选择。当然,为了减少投资,在有些场合,也可先不确定变频器的容量,等设备实际运转一段时间后,再根据实际电流进行选择。 内蒙古某水泥公司Φ2??4m×13m水泥磨二级粉磨系统中,有1台国产N-1500型O-Sepa高效选粉机,配用电动机型号为Y2-315M-4型,电动机功率为132kW,却选用FRN160-P9S-4E型变频器,这种变频器适用于4极、功率为160kW电动机。投入运行后,最大工作频率48Hz,电流只有180A,不到电动机额定电流的70%,电动机本身已有相当的富裕量。而变频器选用规格又比拖动电动机大1个等级,造成不应有的浪费,可靠性不会因此而提高。 安徽巢湖水泥厂3号石灰石破碎机,其喂料系统采用1500×12000板式喂料机,拖动电动机选用Y225M-4型交流电动机,电动机额定功率45kW,额定电流为84.6A。在进行变频调速改造前,通过测试发现,板式喂料机拖动电动机正常运行时,三相平均电流仅30A,只有电动机额定电流的35.5%。为了节省投资,选用ACS601-0060-3型变频器,该变频器额定输出电流为76A,适用于4极、功率为37kW电动机,取得了较好的使用效果。 这2个例子一反一正说明了,对于原来未采用变频器的改造项目,变频器的容量以实际工况为依据来选择可大幅度减少投资。 误区3、用视在功率计算无功补偿节能收益 用视在功率计算无功补偿节能效果。如文献[1]原系统风机工频满载工作时,电动机运行电流为289A,采用变频调速时,50Hz满载运行时的功率因数约为0.99,电流是257A,这是由于变频器内部滤波电容产生改善功率因数的作用。节能计算如下:ΔS=UI=×380×(289-257)=21kVA 因此该文认为其节能效果约为单机容量的11%左右。 实际分析:S即表示视在功率,即电压与电流的乘积,电压相同时,视在功率节约百分比与电流节约百分比是一回事。在有电抗的电路中,视在功率只是反映了配电系统的允许最大输出能力,而不能反映电动机实际消耗的功率。电动机实际消耗的功率只能用有功功率表示。在该例中,虽用实际电流计算,但计算的是视在功率,而不是有功功率。我们知道,电动机实际消耗的功率是由风机及其负载决定的。功率因数的提高并没有改变风机的负载,也没有提高风机的效率,风机实际消耗的功率没有减少。功率因数提高后,电动机运行状态也没有改变,电动机定子电流并没有减少,电动机消耗的有功功率和无功功率都没有改变。功率因数提高的原因是变频器内部滤波电容产生无功功率供给了电动机消耗。随着功率因数提高,变频器的实际输入电流减少,从而减少了电网至变频器之间的线损和变压器的铜耗。同时,负荷电流减小,给变频器供电的变压器、开关、接触器、导线等配电设备可以带更多的负载。需要指出的是,如果象该例一样不考虑线损和变压器铜耗的节约,而考虑变频器的损耗,变频器在50Hz满载运行时,不仅没有节能,而且还费电。因此,用视在功率计算节能效果是不对的。 某水泥厂离心风机拖动电动机型号为Y280S-4,额定功率为75kW,额定电压380V,额定电流140A。在进行变频调速改造前,阀门全开,通过测试发现,电动机电流70A,只有50%负荷,功率因数为0.49,有功功率为22.6kW,视在功率为46??07kVA。在采用变频调速改造后,阀门全开,额定转速运行时,三相电网平均电流为37A,从而认为节电(70-37)÷70×100%=44.28%。这样计算,看似合理,实质上仍是以视在功率计算节能效果。该厂在进一步测试后发现,此时功率因数为0.94,有功功率为22.9kW,视在功率为24.4kVA。可见,有功功率增加,不但没有节电,反而费电。有功功率增加的原因是考虑了变频器的损耗,而没有考虑线损和变压器铜耗的节约。产生这种错误的关键在于没有考虑功率因数提高对电流下降的影响,默认功率因数不变,从而片面夸大了变频器的节能效果。因此,在计算节能效果时,必须用有功功率,不能用视在功率。 误区4、变频器输出侧不能加装接触器 几乎所有变频调速器使用说明书都指出,变频调速器输出侧不能加装接触器。如日本安川变频器说明书就规定“切勿在输出回路连接电磁开关、电磁接触器”。 厂家的规定是为了防止在变频调速器有输出时接触器动作。变频器在运行中连接负载,会由于漏电流而使过电流保护回路动作。那么,只要在变频调速器输出与接触器动作之间,加以必要的控制联锁,保证只有在变频调速器无输出时,接触器才能动作,变频调速器输出侧就可以加装接触器。这种方案对于只有1台变频调速器,2台电动机(1台电动机运行,1台电动机备用)的场合,具有重要的意义。当运行的电动机出现故障时,可以很方便地将变频器切换到备用电动机,经过延时使变频器运行,实现备用电动机自动投入变频运行。并且还可以很方便地实现2台电动机的互为备用。 误区5、变频调速器在离心风机中的应用,可完全取代风机的调节阀门 采用变频调速器对离心风机进行调速来控制风量,与调节阀门控制风量相比,具有明显的节电效果。但在有些场合,变频调速器不能完全取代风机的阀门,在设计中要引起特别注意。为了说明这个问题,我们先从其节电原理谈起。离心风机的风量与转速的一次方成正比,风压与转速的平方成正比,轴功率与转速的立方成正比。 如图1所示,曲线(1)为风机在恒速下,风压-风量(H-Q)特性;曲线(2)为管网风阻特性(阀门开度全开)。风机工作在A点时输出风量为Q1,此时轴功率N1与Q1、H1的乘积面积(AH1OQ1)成正比。当风量从Q1减少到Q2,如采用调节阀门方法,使管网阻力特性变到曲线(3)。系统由原来的工况点A变到新的工况点B运行,风压反而增加,轴功率N2与面积(BH2OQ2)成正比,N1与N2相差不多。如果采用调速控制方式,风机转速由n1降到n2,则风压-风量(H-Q)特性如曲线(4)所示,在满足同样风量Q2的情况下,风压H3大幅度降低,功率N3(相当于面积CH3OQ2)随着显著减少,节能效果十分显著。 从上面的分析还可以看出,调节阀门控制风量,随着风量的减少,风压反而增加;而采用变频调速器调速来控制风量,随着风量的减少,风压大幅度下降。风压下降太多,有可能满足不了工艺要求。即如果工况点在曲线(1)、曲线(2)、H轴所围区域内部,单纯地依靠变频调速器调速将无法满足工艺要求,需要和阀门调节结合才能满足工艺要求。某厂引进的变频调速器,在离心风机中的应用中,因没有设计阀门,单纯地依靠变频调速器调速来改变风机工况点,吃尽了苦头。要么转速太高,风量太大;若降低转速,风压又满足不了工艺要求,吹不进风。因此离心风机在使用变频调速器调速节电时,要兼顾风量和风压这2个指标,否则会带来不良的后果。 误区6、 通用电动机只能在其额定转速以下采用变频调速器降速运行 经典理论认为,通用电动机频率上限为55Hz。这是因为当电动机转速需要调到额定转速以上运行时,定子频率将增加到高于额定频率(50Hz)。这时,若仍按恒转矩原则控制,则定子电压将升高超过额定电压。那么,当调速范围高于额定转速时,须保持定子电压为额定电压不变。这时,随着转速/频率的上升,磁通将减少,因此在同一定子电流下的转矩将减小,机械特性变软,电动机的过载能力大幅度减少。 由此可见,通用电动机频率上限为55Hz是有前提条件的: 1、定子电压不能超过额定电压; 2、电动机在额定功率运行; 3、恒转矩负载。 上述情况下,理论和试验证明,若频率超过55Hz,将使电动机转矩变小,机械特性变软,过载能力下降,铁耗急增,发热严重。 笔者认为,电动机实际运行状况表明,通用电动机可以通过变频调速器进行提速运行。能否变频提速?能提多少?主要是由电动机拖动的负载来决定的。首先,要弄清负荷率是多少?其次,要搞清楚负载特性,根据负载的具体情况,进行推算。简单分析如下: 1、事实上,对于380V通用电动机,定子电压超过额定电压10%长期运行是可以的,对电动机绝缘及寿命没有影响。定子电压提高,转矩显著增大,定子电流减少,绕组温度下降。 2、电动机负荷率通常为50%~60% 一般情况下,工业用电动机通常在50%~60%额定功率下工作。经推算,电动机输出功率为70%额定功率,定子电压提高7%时,定子电流下降26.4%,此时,即使是恒转矩控制,采用变频调速器提高电动机转速20%,定子电流也不但不会上升,反而会下降。尽管提高频率后,电动机铁耗急增,但由其产生的热量与定子电流下降而减少的热量相比甚微。因此,电动机绕组温度也将明显下降。 3、负载特性各种各样 电动机拖动系统是为负载服务的,不同的负载,机械特性不同。电动机在提速后必须满足负载机械特性的要求。经推算恒转矩负载不同负荷率(k)时的允许最高运行频率(fmax)与负荷率成反比,即fmax=fe/k,其中fe为额定工频。对恒功率负载,通用电动机的允许最高工作频率主要受电动机转子和转轴的机械强度限制,笔者认为一般限制在100Hz以内为宜。 应用实例: 我厂链斗输送机为恒转矩负载,因产量提高,需将其电动机转速提高20%。该电动机型号为Y180L-6,额定功率15kW,额定电压380V,额定电流31.6A,额定转速980r/min,效率89.5%,功率因数0.81,运行电流18~20A,正常时最大运行功率7.5kW,负荷率为50%。安装CIMR-G5A4015型变频调速器后,运行频率60Hz,提高转速20%,变频器输出电压最高设定为410V,电动机运行电流12~15A,下降30%左右,电动机绕组温度明显下降。 误区7、忽视变频器的自身特点 变频调速器的调试工作一般由经销厂家来完成,不会出现什么问题。变频调速器的安装工作较简单,一般由用户来完成。一些用户不认真阅读变频调速器的使用说明书,不严格按照技术要求进行施工,忽视变频器自身特点,将其等同于一般电气器件,凭想当然和经验办事,为故障和事故埋下了隐患。 根据变频调速器的使用说明书的要求,接到电动机的电缆应采用屏蔽电缆或铠装电缆,最好穿金属管敷设。截断电缆的端头应尽可能整齐,未屏蔽的线段尽可能短,电缆长度不宜超过一定的距离(一般为50m)。当变频调速器与电动机间的接线距离较长时,来自电缆的高谐波漏电流会对变频调速器和周边设备产生不利影响。从变频器控制的电动机返回的接地线,应直接连到变频器相应的接地端子上。变频器的接地线切勿与焊机及动力设备共用,且尽可能短。由于变频器产生漏电流,与接地点太远则接地端子的电位不稳定。变频器的接地线的最小截面积必须大于或等于供电电源电缆的截面积。为了防止干扰而引起的误动作,控制电缆应使用绞合屏蔽线或双股屏蔽线。同时要注意切勿将屏蔽网线接触到其它信号线及设备外壳,用绝缘胶带缠包起来。为了避免其受到噪声的影响,控制电缆长度不宜超过50m。控制电缆和电动机电缆必须分开敷设,使用单独的走线槽,并尽可能远离。当二者必须交叉时,应采取垂直交叉。千万不能将它们放在同一个管道或电缆槽中。而一些用户在进行电缆敷设时,没有严格按照上述要求进行施工,导致在单独调试时设备运转正常,正常生产时却干扰严重,以致不能运行。 如某水泥厂二次风温表突然出现指示异常:指示值明显偏低,且大幅度波动。在此之前一直运行很好。检查热电偶、温度变送器及二次仪表,均未发现问题,将相关仪表移到其他测点,仪表运行完全正常,而将其他测点的同类仪表换到此处,也出现同样现象。后发现在篦冷机3号冷却风机电动机上新安装了1台变频调速器,而且正是变频器投用后二次风温表才出现指示异常状态。试将变频器停运,二次风温表指示立即恢复正常;再起动变频器,二次风温表又出现指示异常,连续反复试验几次均是如此,从而判断出变频器的干扰是造成二次风温表显示异常的直接原因。该风机为离心式通风机,原来采用阀门调节风量,后改为变频调速调节风量。由于现场粉尘较大,环境恶劣,故将变频器安装在MCC(电动机控制中心)控制室。为了施工方便,变频器接在该风机主接触器的下侧,变频器输出电缆使用该风机电动机的动力电缆。该风机电动机的动力电缆为聚氯乙烯绝缘无钢铠护套电缆,并与二次风温表信号电缆在同一电缆沟的不同桥架层平行敷设。可见,正是因为变频器输出电缆没有采用铠装电缆或穿铁管敷设,导致了干扰现象的发生。这个教训对原来没有采用变频器的改造项目要引起特别注意。 在变频调速器的日常维护中也要特别小心。有的电工一发现变频器故障跳停,就立即打开变频器进行维修。这样做是很危险的,有可能发生人身触电事故。这是因为即使变频器不处于运行状态,甚至电源已经切断,由于其中的电容器的存在,变频器的电源输入线、直流端子和电动机端子上仍然可能带有电压。断开开关后,必须等待几分钟后,使变频器放电完毕,才能开始工作。还有的电工习惯于一发现变频调速系统跳停,就立即用摇表对变频器拖动的电动机进行绝缘测试,从而判断电动机是否烧毁。这也是很危险的,易使变频器被烧。因此,在电动机与变频器之间的电缆未断开前,绝对不能对电动机进行绝缘测试,也不能对已连接到变频器的电缆进行绝缘测试。 对变频器的输出参数进行测量时也要特别注意。由于变频器的输出为PWM波形,含有高次谐波,而电动机转矩主要依赖于基波电压有效值,故测量输出电压时,主要是测量基波电压值,使用整流式电压表,其测量结果最接近数字频谱分析仪测量值,而且与变频器的输出频率有极好的线性关系。若需进一步提高测量精度,可以采用阻容滤波器。数字万用表容易受干扰,测量有较大的误差。输出电流需要测量包括基波和其他高次谐波在内的总有效值,因此常用的仪表是动圈式电流表(在电动机负载时,基波电流有效值和总电流有效值差别不大)。当考虑到测量方便而采用电流互感器时,在低频情况下电流互感器可能饱和,所以,必须选择适当容量的电流互感器。 [ 本帖最后由 hong6601 于 2009-3-28 13:25 编辑 ]
各位亲们,陶氏反渗透膜及东丽反渗透膜,长期可以提供比市场价更优惠更实惠的价格。

31万

积分

2万

金钱

4万

帖子

超脱水师

己身不正 何以正人

2012年度“十大风云人物”勋章竞拍勋章财富勋章十大风云人物2011年度十大风云人物勋章季度优秀版主勋章2013年“十大风云人物”勋章2015守护天使

QQ
75
发表于 2009-3-28 14:35:44 | 只看该作者

变频调速维修保护技术系列

变频器的保护及处理方法   1 过电流保护功能   变频器中,过电流保护的对象主要指带有突变性质的、电流的峰值超过了变频器的容许值的情形.   由于逆变器件的过载能力较差,所以变频器的过电流保护是至关重要的一环,迄今为止,已发展得十分完善.   (1) 过电流的原因   1、工作中过电流 即拖动系统在工作过程中出现过电流.其原因大致来自以下几方面:   ① 电动机遇到冲击负载,或传动机构出现卡住现象,引起电动机电流的突然增加.   ② 变频器的输出侧短路,如输出端到电动机之间的连接线发生相互短路,或电动机内部发生短路等.   ③ 变频器自身工作的不正常,如逆变桥中同一桥臂的两个逆变器件在不断交替的工作过程中出现异常。例如由于环境温度过高,或逆变器件本身老化等原因,使逆变器件的参数发生变化,导致在交替过程中,一个器件已经导通、而另一个器件却还未来得及关断,引起同一个桥臂的上、下两个器件的直通,使直流电压的正、负极间处于短路状态。    2、升速时过电流 当负载的惯性较大,而升速时间又设定得太短时,意味着在升速过程中,变频器的工作效率上升太快,电动机的同步转速迅速上升,而电动机转子的转速因负载惯性较大而跟不上去,结果是升速电流太大。    3、降速中的过电流 当负载的惯性较大,而降速时间设定得太短时,也会引起过电流。因为,降速时间太短,同步转速迅速下降,而电动机转子因负载的惯性大,仍维持较高的转速,这时同样可以是转子绕组切割磁力线的速度太大而产生过电流。    2)处理方法   1 起动时一升速就跳闸,这是过电流十分严重的现象,主要检查   ① 工作机械有没有卡住   ② 负载侧有没有短路,用兆欧表检查对地有没有短路   ③ 变频器功率模块有没有损坏   ④ 电动机的起动转矩过小,拖动系统转不起来   2 起动时不马上跳闸,而在运行过程中跳闸,主要检查   ① 升速时间设定太短,加长加速时间   ② 减速时间设定太短,加长减速时间   ③ 转矩补偿(U/F比)设定太大,引起低频时空载电流过大   ④ 电子热继电器整定不当,动作电流设定得太小,引起变频器误动作 电压保护功能   1 过电压保护    产生过电压的原因及处理方法:   ① 电源电压太高   ② 降速时间太短   ③ 降速过程中,再生制动的放电单元工作不理想,来不及放电,请增加外接制动电阻和制动单元;   ④ 请检查放电回路有没有发生故障,实际并不放电;对于小功率的变频器很有放电电阻损坏:   2 欠电压保护    产生欠电压的原因及处理方法:   ① 电源电压太低   ② 电源缺相;   ③ 整流桥故障:如果六个整流二极管中有部分因损坏而短路,整流后的电压将下降,对于整流器件和晶闸管的损坏,应注意检查,及时更换。 逆变器件的介绍:   1.SCRGTO晶闸管    ⑴普通晶闸管SCR 曾称可控硅,它有三个极:阳极,阴极和门极。    SCR的工作特点是,当在门极与阴极间加一个不大的正向电压(G+K)时,SCR即导通,负载Rl中就有电流流过。导通后,即使取消门极电压,SCR仍保持导通状态。只有当阳极电路的电压为0或负值时,SCR才关断。所以,只需要用一个脉冲信号,就可以控制其导通了,故它常用于可控整流。    作为一种无触点的半导体开关器件,其允许反复导通和关断的次数几乎是无限的,并且导通的控制也十分方便。这是一般的“通-断开关所望尘莫及的,从而使实现异步电动机的变频调速取得了突破。但由于变频器的逆变电路是在直流电压下工作的,而SCR在直流电压下又不能自行关断,因此,要实现逆变,还必须增加辅助器件和相应的电路来帮助它关断。所以,尽管当时的变频调速装置在个别领域(如风机和泵类负载)已经能够实用,但未能进入大范围的普及应用阶段。   ⑵门极关断(GTO)晶闸管 SCR在一段时间内,几乎是能够承受高电压和大电流的唯一半导体器件。因此,针对SCR的缺点,人们很自然地把努力方向引向了如何使晶闸管具有关断能力这一点上,并因此而开发出了门极关断晶闸管。   GTO晶闸管的基本结构和SCR类似,它的三个极也是:阳极(A)、阴极(K)和门极(G)。其图行符号也和SCR相似,只是在门极上加一短线,以示区别。   GTO晶闸管的基本电路和工作特点是:   ①在门极G上加正电压或正脉冲(开关S和至位置1GTO晶闸管即导通。其后,即使撤消控制信号(开关回到位置0),GTO晶闸管仍保持导通。可见,GTO晶闸管的导通过程和SCR的导通过程完全相同。   ②如在GK间加入反向电压或较强的反向脉冲(开关和至位置2),可使GTO晶闸管关断。   用GTO晶闸管作为逆变器件取得了较为满意的结果,但其关断控制较易失败,故仍较复杂,工作频率也不够高。而几乎是与此同时,大功率管(GTR)迅速发展了起来,使GTO晶闸管相形见拙。因此,在大量的中小容量变频器中,GTO晶闸管已基本不用。但其工作电流大,故在大容量变频器中,仍居主要地位。   变频器出现“OVERCURRENT”故障,分析其产生的原因,从两方面来考虑:一是外部原因;二是变频器本身的原因。   一、外部原因:   1.电机负载突变,引起的冲击过大造成过流。   2.电机和电机电缆相间或每相对地的绝缘破坏,造成匝间或相间对地短路,因而导致过流   3.过流故障与电机的漏抗,电机电缆的耦合电抗有关,所以选择电机电缆一定按照要求去选。   4.在变频器输出侧有功率因数矫正电容或浪涌吸收装置。   5.当装有测速编码器时,速度反馈信号丢失或非正常时,也会引起过流,检查编码器和其电缆。   二、变频器本身的原因:   1.参数设定问题:   例如加速时间太短,PID调节器的比例P、积分时间I参数不合理,超调过大,造成变频器输出电流振荡。   2.变频器硬件问题:   a)电流互感器损坏,其现象表现为,变频器主回路送电,当变频器未起动时,有电流显示且电流在变化,这样可判断互感器已损坏。   b)主电路接口板电流、电压检测通道被损坏,也会出现过流。   电路板损坏可能是:1)由于环境太差,导电性固体颗粒附着在电路板上,造成静电损坏。或者有腐蚀性气体,使电路被腐蚀。2)电路板的零电位与机壳连在一起,由于柜体与地角焊接时,强大的电弧,会影响电路板的性能。3)由于接地不良,电路板的零伏受干扰,也会造成电路板损坏。   c)由于连接插件不紧、不牢。例如电流或电压反馈信号线接触不良,会出现过流故障时有时无的现象。   d)当负载不稳定时,建议使用DTC模式,因为DTC控制速度非常快,每隔25微秒产生一组精确的转矩和磁通的实际值,再经过电机转矩比较器和磁通比较器的输出,优化脉冲选择器决定逆变器的最佳开关位置,这样有利用抑制过电流。另外,速度环的自适应(AUTOTUNE)会自动调整PID参数,从而使变频器输出电机电流平稳。 下面讲的是MOSFET以及IGBT   1 功率场效应晶体管(POWER MOSFET 它的3个极分别是源极S、漏极D和栅极G   其工作特点是,GS间的控制信号是电压信号Ugs。改变Ugs的大小,主电路的漏极电流Id也跟着改变。由于GS间的输入阻抗很大,故控制电流几乎为0,所需驱动功率很小。和GTR相比,其驱动系统比较简单,工作频率也比较高。此外,MOSFET还具有热稳定性好、安全工作区大 等优点。   但是,功率场效应晶体管在提高击穿电压和增大电流方面进展较慢,故在变频器中的应用尚不能居主导地位。   2 绝缘栅双极晶体管(IGBT IGBTMOSFETGTR相结合的产物,是栅极为绝缘栅结构(MOS结构)的晶体管,它的三个极分别是集电极C、发射极E和栅极G   工作特点是,控制部分与场效应晶体管相同,控制信号为电压信号Uge,输入阻抗很高,栅极电流I≈0,故驱动功率很小。而起主电路部分则与GTR相同,工作电流为集电极电流I   至今,IGBT的击穿电压也已做到1200V,集电极最大饱和电流已超过1500A,由IGBT作为逆变器件的变频器容量已达到250KVA以上。   此外,其工作频率可达20KHZ。由IGBT作为逆变器件的变频器的载波频率一般都在10KHZ以上,故电动机的电源波形比较平滑,基本无电磁噪声。   目前,在新系列的中小容量变频器中,IGBT已处于绝对优势的地位! 逆变器件的介绍:   上面我向大家介绍了普通晶闸管(SCR)和门极关断晶闸管(GTO),最重要是让大家了解变频器中逆变器件是如何工作的,它们起到什么作用!接下来讲:   大功率晶体管(GTR   大功率晶体管,也叫双极结型晶体管(BJT)。   1 变频器用的GTR一般都是达林顿晶体管(复合管)模块,其内部有三个极分别是集电极C、发射极E和基极B。根据变频器的工作特点,在晶体管旁还并联了一个反向连接的续流二极管。又根据逆变桥的特点,常做成双管模块,甚至可以做成6管模块。   2 工作时状态 和普通晶体管一样,GTR也是一种放大器件,具有三种基本的工作状态:   ⑴放大状态 起基本工作特点是集电极电流Ic的大小随基极电流Ib而变    Ic=βIb   式中β------GTR的电流放大倍数。    GTR处于放大状态时,其耗散功率Pc较大。设U=200VR=10Ωβ=50I=200mA(0.2A)   计算如下:I= βI=50*0.2A=10A    Uce=Uc-IcRc=(200-10*10)V=100V    Pc=UceIc=100*10W=1000W=1KW   ⑵饱和状态 Ib增大时,Ic随之而增大的状态要受到欧姆定律的制约。当   βIb>U/R    时,I=βIb的关系便不能再维持了,这时,GTR开始进入饱和"状态。而当   Ic的大小几乎完全由欧姆定律决定,即 Ics≈Uc/Rc   时,GTR便处于深度饱和状态(Ics 为饱和电流)。这时,GTR的饱和压降Uces 1-5V   GTR处于饱和状态时的功耗是很小的。上例中,设Uces=2V,则    Ics=Uc/Rc=200/10A=20A    Pc=UcesIcs=2*20W=40W   可见,与放大状态相比,相差甚远。   截止状态 即关断状态。这是基极电流I≤0的结果。   在截止状态,GTR只有很微弱的漏电流流过,因此,其功耗是微不足道的。   GTR在逆变电路中是用来作为开关器件的,工作过程中,总是在饱和状态间进行交替。所以,逆变用的GTR的额定功耗通常是很小的。而如上述,如果GTR处于放大状态,其功耗将增大达百北以上。所以,逆变电路中的GTR是不允许在放大状态下小作停留的。   3.主要参数   ⑴在截止状态时   ①击穿电压UceoUcex:能使集电极C和发射极E之间击穿的最小电压。基极B开路是用   Uceo表示,BE间接入反向偏压时用Ucex 表示。在大多数情况下,这两个数据是相等的。   ②漏电流Iceo Icex:截止状态下,从C极流向E极的电流。B极开路时为 IceoBE间反偏时为 Icex   ⑵在饱和状态时   ① 集电极最大电流IcmGTR饱和导通是的最大允许电流。   ② 饱和压降Uces:当GTR饱和导通时,CE间的电压降。   ⑶在开关过程中   ① 开通时间Ton:从B极通入正向信号电流时起,到集电极电流上升到0.9 Ics 所需要的时间。   ② 关断时间Toff:从基极电流撤消时起,至Ic下降至0.1 Ics 所需的时间   开通时间和关断时间将直接影响到SPWM调制是的载波频率。通常,使用GTR做逆变管时的载波频率底于2KHz。   4.变频器用GTR的选用   ⑴Uceo 通常按电源线电压U峰值的2倍来选择。    Uceo≥22U   在电源电压为380V的变频器中,应有 Uceo≥22U*380V=1074.8V,故选用 Uceo=1200VGTR是适宜的。   ⑵Icm 按额定电流In峰值的2倍来选择    Icm≥22 In    GTR是用电流信号进行驱动的,所需驱动功率较大,故基极驱动系统比较复杂,并使工作频率难以提高,这是其不足之处。 还有,变频器在使用中,应注意凝露现象,特别在南方现场环境较潮湿的情况下,解决方法在开关柜内加凝露控制器和加热 器,如果一个房间内变频器有很多台,可以加除湿机或空调 。最近市场出现智能性模块,模块中包含了过电流、过电压、低电压、过热等保护,我也相信在今后的发展中能和大家一起学习,共同维护好我们的使命!
各位亲们,陶氏反渗透膜及东丽反渗透膜,长期可以提供比市场价更优惠更实惠的价格。

31万

积分

2万

金钱

4万

帖子

超脱水师

己身不正 何以正人

2012年度“十大风云人物”勋章竞拍勋章财富勋章十大风云人物2011年度十大风云人物勋章季度优秀版主勋章2013年“十大风云人物”勋章2015守护天使

QQ
76
发表于 2009-3-28 16:39:43 | 只看该作者

变频器在化纤生产线中的应用分析

摘要:该文介绍了在化纤生产线这一特殊环境下变频器的运用,及变频器基本原理、结构特点。论述了用西门子变频器M440在粘胶生产线中的使用细节。特别是变频器的具体表现。最后指出我厂对变频器设备的日常维护。 关键词:化纤生产线 变频器 日常维护
引言
  化纤生产线是粘胶纺丝类基础行业,同时也是耗能大户,其主要生产工艺都是通过各种泵、搅拌机、空气压缩机来完成。现在倡导节约型社会的今天,而能源的浪费却相当的惊人。目前,这些粘胶泵、水泵和空气压缩机大都处于电动机驱动恒速运转状态,还有企业在运行系统设计时,容量选择的较大,系统匹配不合理,往往是“大马拉小车”,造成大量的资源浪费。如将占绝对多数的非调速型电机改成调速运行,使其耗电量实现随负荷大小而变化,则可节约大量能源,将产生显著的节能效果。现代电力电子技术、交流调速技术的发展使得交流电动机变频调速在频率范围、动态响应、精度要求和使用效果等方面发生了巨大的发展。现在凡是可变转速的拖动电动机都可以用变频来调速从而达到节能降耗的目的,据我们对生产耗电能统计,每季度可节电量34%以上。因此,交流调速技术在化纤行业中的应用具有广阔的发展空间。 异步电机的转速n可以表示为   公式中,n2为同步转速,Δn1为转差损失的转速,p为磁极对数,s为转差率,f为电源的频率。可见,改变电源频率就可以改变同步转速和电机转速。频率的下降会导致磁通的增加,造成磁路饱和,励磁电流增加,功率因数下降,铁心和线圈过热。显然这是不允许的。为此,要在降频的同时还要降压。这就要求频率与电压协调控制。此外,在许多场合,为了保持在调速时,电动机产生最大转矩不变,亦需要维持磁通不变,这亦由频率和电压协调控制来实现,故称为可变频率可变电压调速VVVF(Variable Velocity Variable Frequency),简称变频调速。采用变频调速技术后,提高电机的功率因数,减少无功功率消耗。   由变频调速原理可知,调节供胶流量,原则上有二 种方法;一是节流调节,开大供胶阀,流量上升;关小供胶阀 ,流量下降。调节流量的第二种方法是调速调节,胶泵转速升高,供胶流量增加;转速下降,流量降低,对于用胶流量经常变化的场合,采用变频调速调节流量。
二、变频调速控制系统的设计
  变频调速器的控制可以是自动的,也可以是手动的。目前,我们在粘胶泵控制系统中使用的调速技术,大部分是在开环状态下,即人为地根据工艺或外界条件的变化来改变变频器的频率值,已达到调速的目的。部分采用闭环调速控制。   异步电机调速有许多方法,如变极调速、变转差率调速和变频调速等。前两种转差损耗大,效率低,对电机特性来说都有一定的局限性。变频调速是通过改变定子电源的频率来改变同步频率实现电机调速的。在调速的整个过程中,从高速到低速可以保持有限的转差率,因而具有高效、调速范围宽(10~100%)和精度高等性能,节电效果可达到30~40%。变频调速有两种方法:一是交-直-交变频(如图一),适用于高速小容量电机;二是交-交变频。适用于低速大容量拖动系统。
一、变频器调速运行的节能原理
  实现变频调速的装置称为变频器。变频器一般由整流器、滤波器、驱动电路、保护电路以及控制器(MCU/DSP)等部分组成。首先将单相或三相交流电源通过整流器并经电容滤波后,形成幅值基本固定的直流电压加在逆变器上,利用逆变器功率元件的通断控制,使逆变器输出端获得一定形状的矩形脉冲波形。在这里,通过改变矩形脉冲的宽度控制其电压幅值;通过改变调制周期控制其输出频率,从而在逆变器上同时进行输出电压和频率的控制,而满足变频调速对U/f协调控制的要求。PWM的优点是能消除或抑制低次谐波,使负载电机在近正弦波的交变电压下运行,转矩脉冲小,调速范围宽。   采用PWM控制方式的电机转速受到上限转速的限制。如对压缩机来讲,一般不超过7000r/min。而采用PAM控制方式的压缩机转速可提高1.5倍左右,这样大大提高了快速增速和减速能力。同时,由于PAM在调整电压时具有对电流波形的整形作用,因而可以获得比PWM更高的效率。此外,在抗干扰方面也有着PWM无法比拟的优越性,可抑制高次谐波的生成,减小对电网的污染。采用该控制方式的变频调速技术后,电机定子电流下降64%,电源频率降低30%,出胶压力降低57%。 对精度要求高的供胶泵采用闭环调速控制(如图二): 系统主要有四部分组成(1)控制对象:电机功率100KW,额定电流150A,流量720m/h,扬程32.3m。(2)变频调速器:选用西门子MM440适配通用电机,功率110KW,额定电流160A。一般用于连续运转的混合变频器容量选择的基本方法是:变频器额定输出电流大于1.1倍的电动机的额定电流。(3)压力变送器(PT):选用DLK100-OA/0-1Mpa,用于控制出口压力,将压力信号变换为4-20Ma的标准电信号。(4)调节器(PID):选用WP-D905,输入信号4~20mA。采用闭环控制系统,参数超调波动范围小,偏差能及时进行控制。变频器的加速和减速可根据生产工艺要求自动调节,这种高的控制精度能保证生产工艺稳定,提高产品的质量和产量。   变频器具体参数设置必须和控制电机的电压,电流,容量,频率范围相一致,比较重要的是启动及停止斜率时间,和容忍输入电压波动范围的设定。设置恰当可以减少电压波动对变频器影响。这些具体参数设定是经过长期反复实践摸索出来的,对粘胶丝稳定生产起到至关重要的作用。
三、变频具体注意事项
  变频器对线路及电气设备的过载、欠电压和短路断路进行保护,并具有分级选择保护;能直接启动电动机,并保护电动机,发动机和整流装置等免受过载、短路和欠电压等不正常情况的危害。由于化纤生产线周围整体环境恶劣、含有一定浓度的腐蚀性气体,即使加上抽排风,各种外露的金属还是氧化腐蚀、脱落严重,这对变频器等各种电器设备是一种严重考验。变频器产生故障的原因是多方面的,即使是同一原因,也会出现不同的故障现象,故障产生后为了尽早恢复正常,必须根据故障的特征、错误代码进行及时故障排除。在一次全厂秋季检查停电中,供给纺丝车间一台变频器M440停电后再送电时,由于停电时间比较长,这些老旧设备在恶劣环境下自身损坏严重,停电后室温变低,相对湿度变高在设备上电路表面产生凝露,启动失灵。只好更换一个新备台继续使用,最后经过干燥,清扫处理后它又重新可以使用了。有必要对变频器进行定期清理检修维护。   为防止控制器和变频器的控制信号线受空间电磁场的干扰,可在这些控制信号线的外层接屏蔽线,以提高系统的抗干扰能力。此种接线一定要注意,对屏蔽的接地点只能选取一点。不管是在控制器一边,还是在变频器的一边。这样,可保证提高系统的抗干扰能力。如果,屏蔽线在两端都接地,会使屏蔽线上产生电势差,不但不能提高系统的抗干扰的能力,反而加重外界对控制器的干扰。 变频器属于储能设备,在变频器、电动机底座或外壳,配电箱,电缆外皮和电缆盒的外壳,及穿线铜管等,需要有相应的接地或接零保护,为减少人员受伤。
总结
  变频调速这一技术正越来越广泛的深入到粘胶化纤行业中。它的节能、省力、易于构成自控系统的显著优势,同时极大的优化了粘较丝生产流程,提高了粘胶丝的生产率,必将成为粘较丝生产中电力拖动系统的中枢设备。应用变频调速技术也是企业改造挖潜、增加企业效益的一条有效途径。尤其是在高能耗、低产出的设备较多的企业,采用变频调速装置将使企业获得巨大的经济利益,同时这也是国民经济可持续发展的需要。
各位亲们,陶氏反渗透膜及东丽反渗透膜,长期可以提供比市场价更优惠更实惠的价格。

31万

积分

2万

金钱

4万

帖子

超脱水师

己身不正 何以正人

2012年度“十大风云人物”勋章竞拍勋章财富勋章十大风云人物2011年度十大风云人物勋章季度优秀版主勋章2013年“十大风云人物”勋章2015守护天使

QQ
77
发表于 2009-3-28 16:51:02 | 只看该作者

变频器在空压机改造中的应用

原系统工况   一、空压机工作原理简述:   工作原理是由一对相互平行齿合的阴阳转子(或称螺杆)在气缸内转动,使转子齿槽之间的空气不断地产生周期性的容积变化,空气则沿着转子轴线由吸入侧输送至输出侧,实现螺杆式空压机的吸气、压缩和排气的全过程。空压机的进气口和出气口分别位于壳体的两端,阴转子的槽也阳转子齿被主电机驱动而旋转。   原空压机的主电机功率为75KW,运行方式为星-角减压起动重于后全压运行。具体操作程序为:按下启动按钮,控制系统接通启动器线圈并打开断油阀,空压机在卸载模式下启动,这时进气阀处于关闭位置,而放气阀打开以排放油气分离器内的压力。等降压2秒后空压机开始加载运行,系统压力开始上升。如果系统压力上升到压力开关上限值,即起跳压力,控制器使进气阀关闭,油气分离器放气,压缩机空载运行,直到系统压力跌到压力开关下限值后,即回跳压力下,控制器使进气阀打开,油气分离器放气阀关闭,压缩机打开,油气分离器放气阀关闭,压缩机满载运行。   二、原系统工况存在的问题   1、 主电机虽然星-角减压起动,但起动时的电流仍然很大,会影响电网的稳定及其它用   电设备的运行安全。   2、 主电机时常空载运行,属非经济运行,电能浪费严重。   3、 主电机工频运行致使空压机运行时噪音很大。   4、 主电机工频起动设备的冲击大,电机轴承的磨损大,所以设备维护工作时对机械量大。      变频改造方案:   一、变频改造方案设计原则   根据原工况存在的问题并结合生产工艺要求,空压机变频改造后系统应满足以下要求:   1、 电机变频运行状态保持储气罐出口压力稳定,压力波动范围不能超过±0.02Mpa。   2、 系统应具有变频和工频两套控制回路。   3、 系统具有开环和闭环两套控制回路。   4、 一台变频器能控制两台空压机组,可用转换开关切换。   5、 根据空压机的工况要求,系统应保障电动机具有恒转矩运行特性一。   6、 为了防止非正弦波干扰空压机控制器,变频器输入端应有抑制电磁干扰的有效措施。   7、 在用电气量小的情况下,变频器处在低频运行时,应保障电机绕组温度和电机的噪音不超过允许的范围。   8、 考虑到系统以后扩展问题,变频器应满足将来工况扩展的要求。   二、变频器的选型   根据上述原则,经过多方调研、比较,最后我们选择赛普信公司生的SP500-G系列通用   型变频器,使该系统能够满足上述工况要求。   1、V5-G变频器的频率精度:数字设定为±0.01%;模拟设定为±0.2%。可使压力波动范围满足设计要求。   2、系统设计了变频和工频两套主回路。   3、系统设计了闭环与开环两套控制回路。   4、使用转换开关可使变频器任意控制两台空压机组中的一台。   5、V5-G型变频器适用恒转矩特性负载,该变频器还具有转矩补偿和提升的功能。   6、 在该变频器上端加装输入电抗器,有效的抑制了变频器对电网的干扰。   7、 在该变频器下端加装输出电抗器,保障了低频运行时电机温度噪音不超过允许范围。   8、 选用90KW的变频器控制75KW的电动机,在一定程度上满足了将来工况扩展要求。 三、改造方案原理   由变频器,压力变送器、电机、螺旋转子组成压力闭环控制系统自动调节电机   转速,使储气罐内空气压力稳定在设定范围内,进行恒压控制。   反馈压力与设定压力进行比较运算,实时控制变频器的输出步,从而调节电机转速,使   储气罐内空气压力稳定在设定压力上。   四、系统调试   调试工作分成两部分:   第一, 先根据工艺要求、电机参数、负载特性预调变频器参数。   第二, 系统联动调试。   在完成变频器设定参数调整及空载运行后,进行系统联动调试。调试的主要步骤:   1、 将变频器接入系统。   2、 进行工频旁路的运行。   3、 进行变频回路的运行,其中包括开环与闭环控制两部分调试:   开环:此时主要观察变频器频率上升的情况,设备的运行声音是否正常,空   压机的压力上升是否稳定,压力变送器显示是否正常,设备停机是否正常等。如一切正常,则可进行闭环的调试。   闭环:主要依据变频器频率上升与下降的速度和空压机压力的升降相匹配,不要产生压力振荡,还要注意观察机械共振点,将共振点附近的频率跳过去。   空压机变频改造后的效益   1、节约能源   变频器控制压缩机与传统控制的压缩机比较,能源节约是最有实际意义的,根据空气量需求来供给的压缩机工况是经济的运行状。   2、运行成本降低   传统压缩机的运行成本由三项组成:初始采购成本、维护成本和能源成本。其中能源成本大约占压缩机运行成本的77%。通过能源成本降低44.3%,再加上变频起动后对设备的冲击减少,维护和维修量也跟随降低,所以运行成本将大大降低。   3、提高压力控制精度   变频控制系统具有精确的压力控制能力。使压缩机的空气压力输出与用户空气系统所需的气量相匹配。变频控制压缩机的输出气量随着电机转速的改变而改变。由于变频控制电机速度的精度提高,所以它可以使管网的系统压力变化保持在3pisg变化范围,也就是0.2bar范围内,有效地提高了工况的质量。   4、延长压缩机的使用寿命   变频器从0HZ起动压缩机,它的起动加速时间可以调整,从而减少起动时对压缩机的电   器部件和机械部件所造成的冲击,增强系统的可靠性,使压缩机的使用寿命延长。此外,变频控制能够减少机组起动时电流波动,这一波动电流会影响电网和其它设备的用电,变频器能够有效的将起动电流的峰值减少到最低程度。   5、低了空压机的噪音   根据压缩机的工况要求,变频调速改造后,电机运转速度明显减慢,因此有效地降了空   压机运行时的噪音。现场测定表明,噪音与原系统比较下降约3至7分贝。      综上所述,随着变频器应用普及时代的来临,我公司已将变频器的应用扩展到传统空压机改造的领域,不仅扩大了变频器的应用市场,而且为空压机的制造业也提出了新的课题。预计在不远的将来,由于变频调速技术的介入,空压机将真正地进入经济运行时代,我们希望上述工作对于同仁们的传统的电气传动设备技术改造和推进高新技术产品有普及应用工作中能有所启示和借鉴。
各位亲们,陶氏反渗透膜及东丽反渗透膜,长期可以提供比市场价更优惠更实惠的价格。

31万

积分

2万

金钱

4万

帖子

超脱水师

己身不正 何以正人

2012年度“十大风云人物”勋章竞拍勋章财富勋章十大风云人物2011年度十大风云人物勋章季度优秀版主勋章2013年“十大风云人物”勋章2015守护天使

QQ
78
发表于 2009-3-28 16:53:29 | 只看该作者

变频器应用中的干扰问题及其对策

摘要:文中主要介绍了变频器的干扰的形成、来源、途径,以及防止干扰的对策及其在实际应用中几种有效的抗干扰措施。 关键词:变频器 电磁干扰 抗干扰   在各种工业控制系统中,随着变频器等电力电子装置的广泛使用,系统的电磁干扰(EMI)日益严重,相应的抗干扰设计技术(即电磁兼容EMC)已经变得越来越重要。变频器系统的干扰有时能直接造成系统的硬件损坏,有时虽不能损坏系统的硬件,但常使微处理器的系统程序运行失控,导致控制失灵,从而造成设备和生产事故。因此,如何提高系统的抗干扰能力和可靠性是自动化装置研制和应用中不可忽视的重要内容,也是计算机控制技术应用和推广的关键之一。谈到变频器的抗干扰问题,首先要了解干扰的来源、传播方式,然后再针对这些干扰采取不同的措施。 二、干扰信号的传播方式 变频器能产生功率较大的谐波,由于功率较大,对系统其它设备干扰性较强,其干扰途径与一般电磁干扰途径是一致的,主要分传导(即电路耦合)、电磁辐射、感应耦合。具体为:首先对周围的电子、电气设备产生电磁辐射;其次对直接驱动的电动机产生电磁噪声,使得电机铁耗和铜耗增加;并传导干扰到电源,通过配电网络传导给系统其它设备;最后变频器对相邻的其它线路产生感应耦合,感应出干扰电压或电流。同样,系统内的干扰信号通过相同的途径干扰变频器的正常工作。 (1) 电路耦合方式 即通过电源网络传播。由于输入电流为非正弦波,当变频器的容量较大时,将使网络电压产生畸变,影响其他设备工工作,同时输出端产生的传导干扰使直接驱动的电机铜损、铁损大幅增加,影响了电机的运转特性。显然,这是变频器输入电流干扰信号的主要传播方式。 (2) 感应耦合方式 当变频器的输入电路或输出电路与其他设备的电路挨得很近时,变频器的高次谐波信号将通过感应的方式耦合到其他设备中去。感应的方式又有两种: a、电磁感应方式,这是电流干扰信号的主要方式; b、静电感应方式,这是电压干扰信号的主要方式。 (3) 空中幅射方式 即以电磁波方式向空中幅射,这是频率很高的谐波分量的主要传播方式。 三、变频调速系统的抗干扰对策 根据电磁性的基本原理,形成电磁干扰(EMI)须具备三要素:电磁干扰源、电磁干扰途径、对电磁干扰敏感的系统。为防止干扰,可采用硬件抗干扰和软件抗干扰。其中,硬件抗干扰是应用措施系统最基本和最重要的抗干扰措施,一般从抗和防两方面入手来抑制干扰,其总原则是抑制和消除干扰源、切断干扰对系统的藕合通道、降低系统干扰信号的敏感性。具体措施在工程上可采用隔离、滤波、屏蔽、接地等方法。 1、 所谓干扰的隔离,是指从电路上把干扰源和易受干扰的部分隔离开来,使它们不发生电的联系。在变频调速传动系统中,通常是电源和放大器电路之间电源线上采用隔离变压器以免传导干扰,电源隔离变压器可应用噪声隔离变压器。 2、 在系统线路中设置滤波器的作用是为了抑制干扰信号从变频器通过电源线传导干扰到电源从电动机。为减少电磁噪声和损耗,在变频器输出侧可设置输出滤波器;为减少对电源干扰,可在变频器输入侧设置输入滤波器。若线路中有敏感电子设备,可在电源线上设置电源噪声滤波器以免传导干扰。在变频器的输入和输出电路中,除了上述较低的谐波成分外,还有许多频率很高的谐波电流 ,它们将以各种方式把自己的能量传播出去,形成对其他设备的干扰信号。滤波器就是用于削弱频率较高的谐波分量的主要手段。根据使用位置的不同,可分为: (1) 输入滤波器 通常又有两种: a、 线路滤波器 主要由电感线圈构成。它通过增大线路在高频下的阻抗来削弱频率较高的谐波电流。 b、 辐射滤波器 主要由高频电容器构成。它将吸收掉频率很高的、具有辐射能量的谐波成分。 (2) 输出滤波器 也由电感线圈构成。它可以有效地削弱输出电流中的高次谐波成分。非但起到抗干扰的作用,且能削弱电动机中由高次谐波谐波电流引起的附加转矩。对于变频器输出端的抗干扰措施,必须注意以下方面: a、 频器的输出端不允许接入电容器,以免在逆变管导通(关断)瞬间,产生峰值很大的充电(或放电)电流,损害逆变管; b、 输出滤波器由LC电路构成时,滤波器内接入电容器的一侧,必须与电动机侧相接。 3、 屏蔽干扰源是抑制干扰的最有效的方法。通常变频器本身用铁壳屏蔽,不让其电磁干扰泄漏;输出线最好用钢管屏蔽,特别是以外部信号控制变频器时,要求信号线尽可能短(一般为20m以内),且信号线采用双芯屏蔽,并与主电路线(AC380V)及控制线(AC220V)完全分离,决不能放于同一配管或线槽内,周围电子敏感设备线路也要求屏蔽。为使屏蔽有效,屏蔽罩必须可靠接地。
各位亲们,陶氏反渗透膜及东丽反渗透膜,长期可以提供比市场价更优惠更实惠的价格。

31万

积分

2万

金钱

4万

帖子

超脱水师

己身不正 何以正人

2012年度“十大风云人物”勋章竞拍勋章财富勋章十大风云人物2011年度十大风云人物勋章季度优秀版主勋章2013年“十大风云人物”勋章2015守护天使

QQ
79
发表于 2009-3-28 17:00:24 | 只看该作者

变频器应用中的干扰问题及其对策

摘要:文中主要介绍了变频器的干扰的形成、来源、途径,以及防止干扰的对策及其在实际应用中几种有效的抗干扰措施。 关键词:变频器 电磁干扰 抗干扰   在各种工业控制系统中,随着变频器等电力电子装置的广泛使用,系统的电磁干扰(EMI)日益严重,相应的抗干扰设计技术(即电磁兼容EMC)已经变得越来越重要。变频器系统的干扰有时能直接造成系统的硬件损坏,有时虽不能损坏系统的硬件,但常使微处理器的系统程序运行失控,导致控制失灵,从而造成设备和生产事故。因此,如何提高系统的抗干扰能力和可靠性是自动化装置研制和应用中不可忽视的重要内容,也是计算机控制技术应用和推广的关键之一。谈到变频器的抗干扰问题,首先要了解干扰的来源、传播方式,然后再针对这些干扰采取不同的措施。其次是变频器自身对外部的干扰。变频器的整流桥对电网来说是非线性负载,它所产生的谐波对同一电网的其它电子、电气设备产生谐波干扰。另外变频器的逆变器大多采用PWM技术,当工作于开关模式且作高速切换时,产生大量耦合性噪声。因此变频器对系统内其它的电子、电气设备来说是一电磁干扰源。 变频器的输入和输出电流中,都含有很多高次谐波成分。除了能构成电源无功损耗的较低次谐波外,还有许多频率很高的谐波成分。它们将以各种方式把自己的能量传播出去,形成对变频器本身和其它设备的干扰信号。 (1)输入电流的波形 变频器的输入侧是二极管整流和电容滤波电路。显然只有电源的线电压UL大于电容器两端的直流电压UD时,整流桥中才有充电电流。因此,充电电流总是出现在电源电压的振幅值附近,呈不连续的冲击波形式。它具有很强的高次谐波成分。有关资料表明,输入电流中的5次谐波和7次谐波的谐波分量是最大的,分别是50HZ基波的80%和70%。 (2)输出电压与电流的波形 绝大多数变频器的逆变桥都采用SPWM调制方式,其输出电压为占空比按正弦规律分布的系列矩形式形波;由于电动机定子绕组的电感性质,定子的电流十分接近于正弦波。但其中与载波频率相等的谐波分量仍是较大的。 一、变频器干扰的来源 首先是来自外部电网的干扰。电网中的谐波干扰主要通过变频器的供电电源干扰变频器。电网中存在大量谐波源如各种整流设备、交直流互换设备、电子电压调整设备,非线性负载及照明设备等。这些负荷都使电网中的电压、电流产生波形畸变,从而对电网中其它设备产生危害的干扰。变频器的供电电源受到来自被污染的交流电网的干扰后若不加处理,电网噪声就会通过电网电源电路干扰变频器。供电电源的干扰对变频器主要有(1)过压、欠压、瞬时掉电(2)浪涌、跌落 (3)尖峰电压脉冲 (4)射频干扰。 1、 晶闸管换流设备对变频器的干扰 当供电网络内有容量较大的晶闸管换流设备时,由于晶闸管总是在每相半周期内的部分时间内导通,容易使网络电压出现凹口,波形严重失真。它使变频器输入侧的整流电路有可能因出现较大的反向回复电压而受到损害,从而导致输入回路击穿而烧毁。 2、 电力补偿电容对变频器的干扰 电力部门对用电单位的功率因数有一定的要求,为此,许多用户都在变电所采用集中电容补偿的方法来提高功率因数。在补偿电容投入或切出的暂态过程中,网络电压有可能出现很高的峰值,其结果是可能使变频器的整流二极管因承受过高的反向电压而击穿。 二、干扰信号的传播方式 变频器能产生功率较大的谐波,由于功率较大,对系统其它设备干扰性较强,其干扰途径与一般电磁干扰途径是一致的,主要分传导(即电路耦合)、电磁辐射、感应耦合。具体为:首先对周围的电子、电气设备产生电磁辐射;其次对直接驱动的电动机产生电磁噪声,使得电机铁耗和铜耗增加;并传导干扰到电源,通过配电网络传导给系统其它设备;最后变频器对相邻的其它线路产生感应耦合,感应出干扰电压或电流。同样,系统内的干扰信号通过相同的途径干扰变频器的正常工作。 (1) 电路耦合方式 即通过电源网络传播。由于输入电流为非正弦波,当变频器的容量较大时,将使网络电压产生畸变,影响其他设备工工作,同时输出端产生的传导干扰使直接驱动的电机铜损、铁损大幅增加,影响了电机的运转特性。显然,这是变频器输入电流干扰信号的主要传播方式。 (2) 感应耦合方式 当变频器的输入电路或输出电路与其他设备的电路挨得很近时,变频器的高次谐波信号将通过感应的方式耦合到其他设备中去。感应的方式又有两种: a、电磁感应方式,这是电流干扰信号的主要方式; b、静电感应方式,这是电压干扰信号的主要方式。 (3) 空中幅射方式 即以电磁波方式向空中幅射,这是频率很高的谐波分量的主要传播方式。 三、变频调速系统的抗干扰对策 根据电磁性的基本原理,形成电磁干扰(EMI)须具备三要素:电磁干扰源、电磁干扰途径、对电磁干扰敏感的系统。为防止干扰,可采用硬件抗干扰和软件抗干扰。其中,硬件抗干扰是应用措施系统最基本和最重要的抗干扰措施,一般从抗和防两方面入手来抑制干扰,其总原则是抑制和消除干扰源、切断干扰对系统的藕合通道、降低系统干扰信号的敏感性。具体措施在工程上可采用隔离、滤波、屏蔽、接地等方法。 1、 所谓干扰的隔离,是指从电路上把干扰源和易受干扰的部分隔离开来,使它们不发生电的联系。在变频调速传动系统中,通常是电源和放大器电路之间电源线上采用隔离变压器以免传导干扰,电源隔离变压器可应用噪声隔离变压器。 2、 在系统线路中设置滤波器的作用是为了抑制干扰信号从变频器通过电源线传导干扰到电源从电动机。为减少电磁噪声和损耗,在变频器输出侧可设置输出滤波器;为减少对电源干扰,可在变频器输入侧设置输入滤波器。若线路中有敏感电子设备,可在电源线上设置电源噪声滤波器以免传导干扰。在变频器的输入和输出电路中,除了上述较低的谐波成分外,还有许多频率很高的谐波电流 ,它们将以各种方式把自己的能量传播出去,形成对其他设备的干扰信号。滤波器就是用于削弱频率较高的谐波分量的主要手段。根据使用位置的不同,可分为: (1) 输入滤波器 通常又有两种: a、 线路滤波器 主要由电感线圈构成。它通过增大线路在高频下的阻抗来削弱频率较高的谐波电流。 b、 辐射滤波器 主要由高频电容器构成。它将吸收掉频率很高的、具有辐射能量的谐波成分。 (2) 输出滤波器 也由电感线圈构成。它可以有效地削弱输出电流中的高次谐波成分。非但起到抗干扰的作用,且能削弱电动机中由高次谐波谐波电流引起的附加转矩。对于变频器输出端的抗干扰措施,必须注意以下方面: a、 频器的输出端不允许接入电容器,以免在逆变管导通(关断)瞬间,产生峰值很大的充电(或放电)电流,损害逆变管; b、 输出滤波器由LC电路构成时,滤波器内接入电容器的一侧,必须与电动机侧相接。 3、 屏蔽干扰源是抑制干扰的最有效的方法。通常变频器本身用铁壳屏蔽,不让其电磁干扰泄漏;输出线最好用钢管屏蔽,特别是以外部信号控制变频器时,要求信号线尽可能短(一般为20m以内),且信号线采用双芯屏蔽,并与主电路线(AC380V)及控制线(AC220V)完全分离,决不能放于同一配管或线槽内,周围电子敏感设备线路也要求屏蔽。为使屏蔽有效,屏蔽罩必须可靠接地。 4、正确的接地既可以使系统有效地抑制外来干扰,又能降低设备本身对外界的干扰。在实际应用系统中,由于系统电源零线(中线)、地线(保护接地、系统接地)不分、控制系统屏蔽地(控制信号屏蔽地和主电路导线屏蔽地)的混乱连接,大大降低了系统的稳定性和可靠性。 对于变频器,主回路端子PE(E、G)的正确接地是提高变频器抑制噪声能力和减小变频器干扰的重要手段,因此在实际应用中一定要非常重视。变频器接地导线的截面积一般应不小于2.5mm2,长度控制在20m以内。建议变频器的接地与其它动力设备接地点分开,不能共地。 5、采用电抗器 在变频器的输入电流中频率较低的谐波分量(5次谐波、7次谐波、11次谐波、13次谐波等所)所占的比重是很高的,它们除了可能干扰其他设备的正常运行之外,还因为它们消耗了大量的无功功率,使线路的功率因数大为下降。在输入电路内串入电抗器是抑制较低谐波电流的有效方法。根据接线位置的不同,主要有以下两种: (1) 电抗器 串联在电源与变频器的输入侧之间。其主要功能有: a、 通过抑制谐波电流,将功率因数提高至(0.75-0.85); b、 削弱输入电路中的浪涌电流对变频器的冲击; c、 削弱电源电压不平衡的影响。 (2)直流电抗器 串联在整流桥和滤波电容器之间。它的功能比较单一,就是削弱输入电流中的高次谐波成分。但在提高功率因数方面比交流电抗器有效,可达0.95,并具有结构简单、体积小等优点。 6、理布线 对于通过感应方式传播的干扰信号,可以通过合理布线的方式来削弱。具体方法有: (1)设备的电源线和信号线应量远离变频器的输入、输出线; (2) 其他设备的电源线和信号线应避免和变频器的输入、输出线平行; 四、结论 通过对变频器应用过程中干扰的来源和传播途径的分析,提出了解决这些问题的实际对策,随着新技术和新理论不断在变频器上的应用,重视变频器的EMC要求,已成为变频调速传动系统设计、应用必须面对的问题,也是变频器应用和推广的关键之一。变频器存在的这些问题有望通过变频器本身的功能和补偿来解决。工业现场和社会环境对变频器的要求不断提高,满足实际需要的真正“绿色”变频器也会不久面世。我们相信变频器的EMC问题一定会得到有效解决。
各位亲们,陶氏反渗透膜及东丽反渗透膜,长期可以提供比市场价更优惠更实惠的价格。

31万

积分

2万

金钱

4万

帖子

超脱水师

己身不正 何以正人

2012年度“十大风云人物”勋章竞拍勋章财富勋章十大风云人物2011年度十大风云人物勋章季度优秀版主勋章2013年“十大风云人物”勋章2015守护天使

QQ
80
发表于 2009-3-28 17:04:08 | 只看该作者

变频器恒压供水控制的几个问提

摘要:变频器恒压供水控制常见问题和解答 关键词:变频器 恒压供水 控制 1、系统压力不稳,容易振荡? 答:系统压力不稳,可能有以下几种原因: A、压力传感器采集系统压力的位置有问题,压力采集点选取得离水泵出水口太近,管路压力受出水速度影响太大。从而反馈给控制器的压力值忽高忽低,造成系统的振荡。 B、另外,如果系统采用了气压罐的方式,而压力采集点选取在气压罐上,也可能造成系统的振荡。因为,空气本身有一定的伸缩性,而且气体在水中的溶解度斯压力的变化而变化,水泵出水和通过气体传递压力之间有一定的时间差,从而造成系统振荡。 C、控制器和变频器的加减速时间与水泵电机功率不相符。一般情况下,功率越大,其加减速时间也就越长。此项参数用户可多选几个数据进行试验。比如,15KW一般为10至20秒之间。 2、小泵起停过于频繁? 答:系统之中,控制器的参数中的第11项参数,即小泵停止压力误差过小。在所有主泵都关闭以后,当系统的实际压力低于设定的压力时,小泵则起动。随着系统压力的上升,使得系统的实际压力高于设定压力与小泵停止压力误差这两者之和时,小泵则被系统关闭。所以,解决问题的方法是将此项参数调高一定值即可。 3、模拟输出不正常,变频器运行频率与控制器输出不符? 答:首先,应确定是什么硬件出了问题。使控制器进入手动调试状态,分别用万用表量出控制器输出0Hz及50Hz时所对应的模拟量输出值。如果控制器的模拟输出值在0Hz时大于30mV,或在50Hz时小于控制器第5项参数定标的电压值,则说明控制器输出存在问题。这里有几种情况: A、如果随着控制器的频率变化,输出一直保持不变,说明控制器的模拟输出电路损坏。 B、如果模拟输出值也是变化的,但不能达到最大值,可通过调节控制器小窗口中VR3电位器可解决。 其次,如果控制器的输出值正常,当控制器输出达到最大值时,变频器不能达到50Hz,说明是变频器的设定值存在问题,可调节变频器的频率增益解决。 4、水泵切换时,变频器输出不为零,为什么? 答:用户应确定控制器给变频器的控制线全部接上,在水泵进行切换动作时,控制器会给变频器一个滑行停车信号,即EMG信号。有的用户EMG这根信号线并没有接,从而直接导致上述情况。此类现象要绝对禁止,否则,容易损坏变频器。如果有EMG信号线,请仔细检查接线是否接实。确定接实,没有线路故障后,再用万用表检查控制器的EMG是否有输出。如果当控制器处于切换时,EMG信号没有输出,则说明是控制器的问题。 5、控制器与变频器的抗干扰接线如何接法? 答:为防止控制器和变频器的控制信号线受空间电磁场的干扰,可在这些控制信号线的外层接屏蔽线,以提高系统的抗干扰能力。此种接线一定要注意,对屏蔽的接地点只能选取一点。不管是在控制器一边,还是在变频器的一边。这样,可保证提高系统的抗干扰能力。如果,屏蔽线在两端都接地,会使屏蔽线上产生电势差,不但不能提高系统的抗干扰的能力,反而加重外界对控制器的干扰。 6、控制器的数据跑飞,或数据偶尔不正确,如何解决? 答:此种情况是控制器受到严重的干扰所造成的。往往控制器的工作环境比较恶劣,干扰的信号来自多方面。请用户在修改控制器的状态或参数之后,一定要将控制器小窗口内黑色的键盘锁定开关拨至LOCK的位置。这样,不光是防止别人无意识地修改参数,也可保证系统数据不会跑飞。如果数据偶尔不正常,控制器能自动运行并未停止,系统稳定压力并未改变,此时控制器可自动将原数据读回来。假如控制器已经不能正常工作,用户可将控制器的电源断开,过一会再重新开机,系统会恢复正常工作。如果用户忘记锁定键盘锁定开关,设定数据以被改写,则需用户重新设定系统参数即可。设定完成之后,要注意锁定开关。 9、工作时系统压力高于设定值,为什么主机不停? 答:主要原因可能是以下几项之一: (1)如果压力传感器反应的压力和面板的压力不相符,只是压力传感器的压力高于设定值,而面板反映的压力并未超出,则应查看压力传感器是否损坏,接线是否有问题。此时控制器主机不停是正常的。 (2)如果上述情况不存在,控制器和传感器的压力相符,均高于设定压力,则应检查附属小泵的设定状态,看小泵是否为开启状态。如果小泵是关闭的,主机不停也是正常的。如果小泵是开启的,请查看主泵的运行频率,最低频率并非设定值,此时说明系统正处于正常的供水过程之中。 10、消防水泵不能定时巡检,为什么? 答:首先,检查控制器的消防定时巡检功能是否已经打开,其功能代码是第12项。如果此项功能已处于打开状态,而且设定了定时巡检的时间值,请查阅控制器运行的记录,查看是否有控制器掉电的情况。如果控制器在运行过程之中发生了掉电,控制器将重新记录时间,当时间到达设定的巡检时间时,才做巡检功能。
各位亲们,陶氏反渗透膜及东丽反渗透膜,长期可以提供比市场价更优惠更实惠的价格。
您需要登录后才可以回帖 登录 | 注册   扫一扫,用微信登录

本版积分规则

联系管理员|手机版|小黑屋|水世界-水处理技术社区(论坛) ( 京ICP备12048982号-4

GMT+8, 2025-5-23 03:29 , Processed in 0.146800 second(s), 54 queries .

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表